
Domain-specific front-end for virtual system modeling

Janne Vatjus-Anttila, Jari Kreku, Kari Tiensyrjä

 VTT, Technical Research Centre of Finland, Oulu Finland
{janne.vatjus-anttila, jari.kreku, kari.tiensyrja}@vtt.fi

Abstract. The complexity of software and hardware in embedded systems has
risen rapidly due to convergence of diverse applications and adoption of multi-
core technologies. Consequently, the abstraction level of system design, model-
ing and exploration needs to be raised to manage the complexity. The Y-chart
approach, typically applied in the system-level performance evaluation, allo-
cates/maps a model of application on a model of execution platform and the re-
sulting system model is simulated to obtain performance data. In this work,
Domain-Specific Modeling (DSM) has been adopted as means of raising the
abstraction level for building, composing, configuring and checking of high-
level models in the virtual system performance modeling and simulation ap-
proach, called ABSOLUT. Domain-Specific Languages (DSL) were defined to
serve as front-ends for application workload, platform and allocation modeling
using the MetaEdit+ tool. The results are demonstrated with a video player case
example. First experiences indicate that in performance evaluation related tasks
the modeling productivity, model management and ease of learning have im-
proved.

Keywords: DSM, DSL, embedded system, virtual system, SystemC, perfor-
mance exploration

1 Introduction

The complexity of hardware and software has risen rapidly particularly in advanced
embedded system domains, like communication systems, during the recent years due
to extensive adoption of multi-core technologies. Real-time embedded systems are
often computationally intensive and constrained with limited resources, e.g. pow-
er/energy, size and cost. The systems accommodate a large number of on terminal
and/or downloadable applications offering the users with numerous services related to
telecommunication, video, digital television, internet etc. More flexibility, scalability
and modularity are expected from the execution platforms to support the applications.
The digital processing architectures will evolve from current system-on-chips to mas-
sively parallel computers consisting of heterogeneous subsystems connected by a
network-on-chip.

The design complexity requires the elevation of the design process to a higher level
of abstraction. At the system level, models of entire platforms can be built that enable
hardware-software co-development and rapid, early design space exploration. Such

models provide quick feedback for the designers about the effect of their design deci-
sions to critical system metrics like performance. Complex interactions and the highly
dynamic nature of systems make their static analysis difficult, which is why such
executable models are indispensable [1].

In this work we use ABSOLUT [2] methodology and toolset as a backend for early
phase system level performance simulation of embedded systems. The main modeling
phases in the virtual system modeling include specifying computing platform’s capac-
ity model, application workload and allocation of workload to computing resources of
the platform. The result of an allocation is a virtual system model, which can be simu-
lated using the OSCI SystemC simulator to measure performance data, e.g. utilization
of platform resources.

Domain-Specific Modeling (DSM) raises the level of abstraction beyond pro-
gramming by specifying the solution directly using domain concepts. It is used in
many application domains and in particular embedded application development with
domain specific language (DSL) has been adopted in many companies [3].The final
products are generated from these high-level specifications [4]. The benefits of DSM
come in many forms like easier modeling/programming, productivity increase, better
code quality and maintenance ability [5].

In this paper we propose applying DSM in virtual system modeling domain and
present a MetaEdit+[6] based prototype DSL that can be used as a front-end to the
ABSOLUT performance modeling and simulation approach. It resembles a traditional
Graphical User Interface (GUI) of modeling tool and it can be used like one. We ap-
plied the DSL in an example case study and present the enhanced performance evalu-
ation workflow using DSM.

The rest of the paper is structured as follows. In Chapter 2 system-level perfor-
mance modeling and evaluation and used ABSOLUT approach are described. Chapter
3 discusses Domain-Specific Modeling. Chapter 4 presents the DSL front-end for
ABSOLUT approach through applying the DSM method for virtual system model
development phases. In Chapter 5 the ABSOLUT workflow and the use of the DSL in
it is presented and results of the case study are shown. Chapter 6 gives conclusions.

2 System-level performance modeling and evaluation

Performance evaluation approaches can be divided into three categories: analytical
approach, simulations and measurements [7]. The analytical approach is suitable for
early performance evaluation, but the accuracy of results is low because it requires
many simplifications and assumptions. In simulations, the execution of an application
is simulated using a computer program. Simulation provides more accurate results
than analysis since it is possible to incorporate more details of the system in the mod-
els. Simulations are suitable for early evaluation, since they can be performed before
implementations of hardware and/or software are completed. Measurements can be
done with real applications, prototypes of applications or benchmark programs that
mimic real software. An implementation of the execution platform is, however, re-
quired in all cases and therefore measurements are not suitable for early evaluation.

Performance simulation approaches are categorized in the European EDA
Roadmap [8] into virtual systems, virtual platforms and virtual prototypes:
• Virtual system approaches combine abstract application models with an abstract

execution platform model. The applications are represented using e.g. workload
models, traces or task graphs but not as real instructions of processors. The plat-
form model typically has a high abstraction level and capacity models of compo-
nents instead of instruction set simulators.

• Virtual platform approaches use real application software compiled to binary
form in simulations. The execution of the applications is simulated on top of a
virtual platform model, which contains one or more instruction set simulators.
The platform models need to be functionally complete and use accurate memory
maps to be able to execute the application binaries.

• Virtual prototype approaches also use real application binaries with instruction
set simulators. The virtual prototype approaches model full functionality of the
execution platform using hardware description languages like VHDL or Verilog.

ABSOLUT [2] is a virtual system performance simulation approach intended for
early evaluation of embedded computer systems and for exploring the design space. It
is also a set of tools, which assist the designer with application and platform model-
ing, allocation and configuration, simulation and result visualization. It has been ap-
plied to several case studies ranging from contemporary mobile phone platforms to
future high-performance systems consisting of hundreds of components. Fig. 1 pre-
sents the main phases of ABSOLUT performance modeling method.

Fig. 1. Y-chart model of ABSOLUT performance modeling

Applications are modeled as layered workload models, which ultimately consist of
abstract, instruction-like workload primitives. Several techniques have been devel-
oped to create workload models from information sources such as application specifi-
cations or execution traces. A compiler-based tool exists to create workload models
automatically from application source code [9].

As application functionality is abstracted, the complexity of execution platform
models is also reduced especially with respect to the processing elements. The data
paths of processing elements need not be modeled in detail and data transfers and
storage are simulated only from the performance point of view. A capacity model of
platform can be rapidly constructed from components in a model library with the help
of a platform generation tool.

The virtual system model, constructed by allocating workload models on top of the
platform components, is simulated using the IEEE standard SystemC [10] simulation
kernel and models based on the TLM standard [11]. Performance, power and energy
consumption is obtained from simulation by instrumenting the workload and/or plat-
form models with custom performance probes. Designer can freely set the probes and
extract e.g. resource utilization, execution latencies or interconnection traffic.

3 Domain-Specific Modeling

Basically, Domain-Specific Modeling is creating and using modeling languages for
specific purposes. Domain-specificity of modeling means that key concepts of each
domain can be used as the modeling elements of the language. Modeling elements can
have graphical symbols and the use of DSL is actually placing these elements on dia-
gram according language modeling rules. Diagrams made with DSL are formal de-
scriptions of systems and applications and as such suitable for documentation, analy-
sis and transforming them to other forms like source code or other artifacts. In par-
ticular, the generation features complete the benefits that DSM and DSLs provide.

Tool support for applying DSM exists in commercial, academic and open source
tools [12]. True DSM tools enable developing of new DSL, which can be run on top
of the tool or as a standalone program depending of the tool. Increasing interest to-
wards DSM has brought DSM features also to IDEs [13].

DSLs are often made to very specific domains inside companies, which are not in
public use. However, DSLs are applied in the graphical user interfaces of some em-
bedded system development tools, too. For example, CoFluent Studio [14] and Simics
[15] include DSL that can be used for modeling of explored system. These apply for
somewhat similar purposes as ABSOLUT and have therefore similar modeling phas-
es. However, the modeling notions differ due methodology differences. In addition, it
is important to notice the fundamental difference between the ABSOLUT DSL front-
end and the DSLs of mentioned tools. Neither GUIs nor DSLs of the mentioned tools
are implemented on an actual DSM tool as the front-end presented in this paper is.

4 DSL front-end for virtual system modeling

Virtual systems for performance simulations are often made from existing compo-
nents and in an ideal case, the modeling should not require much coding. However,
the platform model needs to be composed and configured. The application modeling
requires making a high-level model of application. The allocation of application ele-
ments to the processing elements of platform model is one of the modeling phases.

In this work, the DSM approach is applied to the modeling phases. The same DSM
environment that consists of a DSM tool, a few DSLs and ABSOLUT tools applies
also for building simulateable models, running simulations and analyzing results.

4.1 DSM workflow and environment

Although every domain has its special features, a workflow consisting of the next four
phases for developing DSLs for different domains can be used [16]:

1. Identifying abstractions and how they work together
2. Specifying the language concepts and their rules (meta-model)
3. Creating the visual representation of the language (notation)
4. Defining the generators for model checking, code, documentation, etc.

In our case, the Y-chart model shows clearly the modeling phases and their inter-
relations. Consequently, it was natural to proceed towards modeling phase specific
abstractions. The existing ABSOLUT model library and experiences of tools of the
domain were the basis according which the language concepts, properties, rules and
notations were defined. The notation design in prototype development phase had nat-
urally low priority. In the generator definitions, the goal was to enable the usage of
the existing ABSOLUT tools and generation of compatible mid- representations.

Proceeding according to the workflow requires expertise of both the problem do-
main and the DSM. Additionally an appropriate DSM tool is needed. In this work, the
DSM tool MetaEdit+ 4.5 Workbench [6] developed by MetaCase has been used and
the solution presented here contains some tool specific notions. The tool provides
different diagram editors for modeling with the DSM languages, support for the DSL
and generator definition and is upgraded with new versions by the tool vendor.

4.2 DSL for workload modeling

The workload modeling DSL is developed for the compiler based workload generator
of ABSOLUT, which produces workload models from normal C/C++ code. Any ap-
plication modeling DSL that can generate C code can therefore be used in producing
the ABSOLUT compatible workload model. Existing C code is also used for work-
load generation. The workload modeling DSL of ABSOLUT front-end is targeted for
workload model and workload trace configuration and generation.

The workload modeling is made with the diagram presentations of Workload Mod-
eling Graph, on which the DSL objects and connections are placed. Fig. 2 presents an
example of such a diagram. It contains two Workload Model objects, which both are
linked to two Workload Trace objects. The object symbols contain symbol names and
information about the status of the workload models and traces. The MetaEdit+
toolbar contains the modeling elements of the graph type and the generator buttons.

The workload modeling scheme consists of two phases and both have an own ob-
ject notation in this solution. The Workload Model object is used for defining and
generating the workload model according to the object properties. Properties are used

to select the valid external workload model generator, the generation script and the
source code folder. The MERL workload model generator uses the property infor-
mation and generates the workload model. Several Workload Model objects can be
used in a single diagram to generate different workload models from the same source
code or from many different source codes.

The Workload Trace object is used to make the workload trace that can be allocat-
ed to the platform model. It needs a link to the Workload Model object defining the
workload model that is executed in trace generation. The properties of the Workload
Trace object define all the parameters that are needed to execute the workload model.
The object has also a property, which defines path used to store the generated trace.

Fig. 2. Diagram presentation of Workload Modeling Graph

The MERL generator first runs the workload model that produces the workload trace
and then stores the trace files to defined path. Generated workload trace consists of
files of which each contains trace of one workload model thread. Several Workload
Trace objects can be linked to single Workload Model object, which enables produc-
ing different workload traces from the workload model based on the parameters.

4.3 DSL for platform modeling

The key concepts that are needed in the platform modeling are the various hardware
elements (see Table 1). The element types and their properties are specified with dif-
ferent property sets. In addition to the objects, some relationship types and role types

are needed for linkage between hardware elements. If large platforms are modeled,
the sub-system object could be applied in the DSL too. Modeling rules can be includ-
ed in the DSL to prevent the designer from making impossible or erroneous connec-
tions between elements or other kind of modeling mistakes.

A diagram editor is the only alternative for a block based platform modeling. Mod-
eling work convenience depends of the modeling elements. By using different sym-
bols for the language concepts, perceiving of the platform model is easier. Different
shapes, colors and text of the component objects symbols enable this. The relationship
and role symbols can also have tuned symbols, if there are many of them or if they
have properties.

Generators can have more than one purpose in the platform modeling DSL.
Checkup generators are another way to confirm the platform validity in addition to the
rules set in the DSL definition. The main purpose of the generator in the platform
modeling is to produce a description of a platform that can be used in the simulation
phase. Generators can also be used to update the modeling element list, which is im-
portant when the components are modeled elsewhere.

Our DSL for platform modeling consists of platform objects, their relationships,
roles, modeling rules and the platform model to XML generator. The objects and
other elements of the platform modeling DSL are listed in Table 1.

Table 1. Modeling elements of platform modeling DSL.

Element Description
Processor Object is used to model processor and accelerator components.
Memory Object is used to model memory components.
Bus Object is used to model bus components.
Interface Object is used to model interface of subsystem.
Subsystem Object is used to model subsystems of platform.
Router Object is used to model connections between subsystems.
Connection Relationship used to model all connections in the platform diagram.
Master Role that connects master component to connection.
Slave Role that connects slave component to connection.

The integration of the DSL with ABSOLUT and its component library is established
by importing the component library description to the DSL. The import updates the
pull down list of each hardware element. For example, a new processor type can be
selected from the pull down list of Processor object types when an updated
ABSOLUT component library definition has been imported.

An example ARM processor platform, modeled in a diagram presentation of the
Platform Modeling Graph is presented in Fig. 3. Using of the platform modeling DSL
resembles the use of many other platform-modeling tools. Components are picked
from toolbar, placed, connected to other components and configured from the proper-
ties of the particular component type.

Subsystem objects are also defined in the DSL to help the modeling of large plat-
forms in smaller parts. When they are used, the top level of platform is composed
from Subsystem and Router objects. The architecture of each subsystem can be mod-

eled with a separate platform diagram as Subsystem object decomposition. The inter-
face objects are used inside them to define how they are connected to other subsys-
tems.

Fig. 3. Platform model made with platform modeling DSL

The MERL generator is used to generate XML descriptions of the modeled platforms.
The generator goes through all the platform diagrams that are related to the platform
model and includes their connections, components and the whole platform structure
into the XML file.

4.4 DSL for allocation

An allocation DSL should contain objects presenting application model elements and
computing resources of platform. Some way to link application model elements to
selected platform model elements is also required. A generator for generating alloca-
tion file belongs also to allocation DSL.

Object locations on a diagram can be utilized with the used DSM tool for building
the allocation DSL. The links between application and platform elements can be
based on object locations. The allocation DSL uses the Allocation Area and the Allo-
cation to Resource allocation objects. The application elements are items of the work-
load, and the Workload Thread objects and the Workload Thread Group objects are
used in the allocation diagram in addition to the allocation objects. The location of
workload objects with respect to the allocation objects defines the allocation.

There are several ways to bring workload item objects to the diagram. They can be
picked from the object list, which shows existing objects, or they can be created man-
ually from the scratch. They can also be generated according to corresponding work-
load traces or according prompt input.

The MERL generator producing the allocation file detects all the Allocation to Re-
source objects that are placed on the Allocation Area object. The generator also de-
tects items of the workload on top of the Allocation to Resource objects and forms the
allocation file accordingly. When a workload item is on the Allocation to Resource

object, which has the valid resource property and the Allocation to Resource object is
on the Allocation Area object, the workload item is correctly placed. Warnings are
generated on the allocation objects when the objects are placed wrongly. The Alloca-
tion Area object contains also a listing of the allocation, which changes according to
the locations of the other objects in the diagram. The generator producing the listing
can also print warnings, because the Allocation Area object has information of the
workload items and the platform resources, which can be used in composing the allo-
cation.

Dynamic symbols are used as guidance for the designer towards valid allocations.
The symbols of workload objects are made dynamic and the symbols are changing
during the allocation work depending how they are placed. A correctly placed work-
load item has symbol, which is emphasized with yellow. Wrongly placed workload
item has two different symbols.

Fig. 4 shows an example allocation, modeled in a diagram presentation of the Allo-
cation Modeling Graph. It contains the Allocation Area object, Allocation to Resource
objects and Workload Thread objects. The allocation in it contains errors, which are
reported in the allocation listing.

Fig. 4. Allocation is illegal because two workload items, irrelevant to selected workload, are
placed on the allocation area and one relevant item of workload is not inside allocation objects.

5 Modeling with ABSOLUT DSL

The updated workflow of the ABSOLUT modeling enhanced by the developed DSLs
is described using a video player as a demonstration case.

5.1 ABSOLUT workflow with DSL

The ABSOLUT workflow presented earlier in Fig. 1 does not change dramatically
because of DSLs. The Y-chart flow is still the basis of the modeling method. The
main changes are related to the modeling phases, which are enhanced with the DSLs.
The developed front-end can also be used for performance simulations and simulation
result analysis but this does not change the overall workflow.

The workload modeling DSL gathers all workload modeling information to one di-
agram. The workload modeling can be therefore managed more efficiently. Different
versions of workload models and workload traces can be generated in a controlled
way and stored in an appropriate location.

The platform modeling DSL speeds up the composition of platform models from
the ABSOLUT model library components and makes it less error prone by avoiding
manual editing of XML documents. The platform description generator produces an
XML file, which ABSOLUT tools need to produce the platform source code.

Allocation DSL enables drag and drop like method for allocation of workload
items to platform resources. Workload items can be imported which reduces effort. It
guides the designer and alerts from illegal allocations. In addition to the graphical
allocation, a textual allocation listing is visible during the allocation phase. Allocation
description files are generated in a format suitable for the ABSOLUT tools.

The generators are used to start ABSOLUT tools and compilers, which produce the
simulation model. There is also a generator, which runs the performance simulation.

5.2 Case study

The video player case study has been made with the described front-end. The player
uses H264 high definition video coding which is used in high quality mobile devices.
The ABSOLUT workload model was generated from the open source FFMPEG [17]
source code. The workload generation DSL was used to set the Workload Model con-
figuration and single and two thread configurations of the Workload Trace object.
Workload traces were generated by the generator that is used to execute the workload
models.

Our test case used an OMAP4 like platform [18]. The platform model was com-
posed from platform modeling elements with our platform modeling DSL. The plat-
form model is a simplified version of the OMAP4 but e.g. includes the dual-core CPU
for testing of different allocations. The XML description of the modeled platform was
produced with the platform description generator.

Two different allocations were made with the allocation DSL so that the effect of
changing the workload allocation could be detected. The workload items were im-

ported and allocation objects instantiated. Then the allocation was composed and the
allocation description files generated. The same was done for both of the workloads.

SystemC simulations were performed with the OMAP4 platform model and two
pairs of allocation files and workload models. The utilization of the ARM cores was
the property, which was measured from the simulations. The single-threaded version
of the application utilizes the Core 0 100 %, but the Core 1 is not used at all. In the
dual-threaded version, the load is evenly divided to both cores, which shows that plat-
form capacity is nicely harnessed. The observed utilization rates for the dual-core
CPU of the multi-threaded case are presented in Figure 5.

Fig. 5. Data processing load of both cores in the two thread video coding case.

6 Conclusions

This paper describes a way of utilizing the DSM method on the domain of virtual
system modeling. The resulting prototype DSL set can be used as a modeling and
simulation front-end to the ABSOLUT virtual system modeling tools.

Our experience of DSM was near to zero when the work began and notion of DSM
has become clearer in the course of the work. The experiences of the DSM and from
the used DSM tool are positive. The DSLs were developed incrementally in smalls
steps and they were tested with example data. All three DSLs have evolved steadily
without major tool or DSM approach related problems.

The developed DSLs improve the usability of the ABSOLUT, which so far has
been used without a graphical front-end. Especially the learning curve shortens due
more user-friendly modeling. In particular, the DSL front-end makes modeling easier
for designers who are not experienced with SystemC [10] and TLM [11].

The phases of the ABSOLUT virtual system modeling - workload modeling, plat-
form modeling and allocation modeling - were carried out with the developed DSL in
a video player case study. The performance simulation was carried out for two system
models from which the performance data was recorded. According to our experiences,
the DSL-aided workload, platform and allocation modeling is a workable idea.

Our work continues with the refinement of the ABSOLUT DSL. The usage of a
DSM tool for simulation observation and simulation result analysis front-end is also
an interesting research direction that has already been pretested. There are also possi-
bilities to explore how this sort of DSM approach suits to other embedded system
modeling phases.

Acknowledgements. This work is supported by the European Commission and Tekes
– the Finnish Funding Agency for Technology and Innovation - under the grant
agreement ARTEMIS-2010-1-269362 PRESTO.

The adoption of DSM principles and environment was guided by experts of
MetaCase. Especially Mr. Janne Luoma contributed in solving issues faced during the
work. Dr. Juha-Pekka Tolvanen receives also our gratitude for professional com-
ments.

7 References

1. Gerstlauer, A., Chakravarty, S., Kathuria, M., Razaghi, P.: Abstract System-Level Models
for Early Performance and Power Exploration. In 17th Asia and South Pacific Design Au-
tomation Conference, pp. 213-218. IEEE (2012).

2. Kreku J., Hoppari M., Kestilä T., Qu Y., Soininen J.-P., Andersson P., Tiensyrjä K. Com-
bining UML2 Application and SystemC Platform Modelling for Performance Evaluation
of Real-Time Embedded Systems, 18p. EURASIP Journal on Embedded Systems.
Hindawi Publishing Corporation (2008).

3. Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D., What Kinds of Nails Need a Do-
main-Specific Hammer?, IEEE Software, July/Aug, 2009.

4. DSM Forum, http://www.dsmforum.org/ (2012).
5. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling full code generation,

Wiley-IEEE Computer Society Press (2008).
6. Domain-Specific Modeling with MetaEdit+, http://www.metacase.com (2012).
7. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experi-

mental Design, Measurement, Simulation and Modeling, 685 p.. John Wiley & Sons, Inc.
(1991).

8. European EDA Roadmap. Technical report, 352 p. CATRENE (2009).
9. Kreku, J., Tiensyrjä, K., Vanmeerbeek, G.: Automatic workload generation for system-

level exploration based on a modified GCC compiler. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 369-374. IEEE (2010).

10. Grötker, T. and Liao, S. and Martin, G. and Swan, S.: System design with SystemC.
Springer, 2002.

11. SystemC Transaction-level Modeling Standard, TLM-2.0, http://www.accelera.org (2012).
12. DSM Tools, http://www.dsmforum.org/tools.html (2012)
13. Eclipse Modeling Project, http://www.eclipse.org/modeling/ (2012).
14. CoFluent Studio, http://www.cofluentdesign.com (2012).
15. Wind River Simics, http://www.windriver.com/products/simics/ (2012).
16. Tolvanen, J.-P.: Domain-Specific Modeling: How to Start Defining Your Own Language,

http://www.devx.com/enterprise/Article/30550 (2006).
17. FFmpeg, http://www.ffmpeg.org/ (2012).
18. OMAP Mobile Processors, http://www.ti.com/ (2012).

