Domain-specific front-end for virtual system modeling

Janne Vatjus-Anttila, Jari Kreku, Kari Tiensyrja

VTT, Technical Research Centre of Finland, Ouludinl
{janne.vatjus-anttila, jari.kreku, kari.tiensyrja}@tt.fi

Abstract. The complexity of software and hardware in embddsiestems has
risen rapidly due to convergence of diverse apfitina and adoption of multi-
core technologies. Consequently, the abstracticel Evsystem design, model-
ing and exploration needs to be raised to managedmplexity. The Y-chart
approach, typically applied in the system-levelf@@nance evaluation, allo-
cates/maps a model of application on a model ofti@n platform and the re-
sulting system model is simulated to obtain perfomoe data. In this work,
Domain-Specific Modeling (DSM) has been adoptedresans of raising the
abstraction level for building, composing, configigr and checking of high-
level models in the virtual system performance nliageand simulation ap-
proach, called ABSOLUT. Domain-Specific LanguageSI(Pwere defined to
serve as front-ends for application workload, platf and allocation modeling
using the MetaEdit+ tool. The results are demotedravith a video player case
example. First experiences indicate that in peréorce evaluation related tasks
the modeling productivity, model management and eddearning have im-
proved.

Keywords: DSM, DSL, embedded system, virtual system, Systgme@or-
mance exploration

1 Introduction

The complexity of hardware and software has risgndty particularly in advanced
embedded system domains, like communication systdoming the recent years due
to extensive adoption of multi-core technologiegaRime embedded systems are
often computationally intensive and constrainedhwimited resources, e.g. pow-
er/energy, size and cost. The systems accommoditig@ number of on terminal
and/or downloadable applications offering the usétl numerous services related to
telecommunication, video, digital television, intet etc. More flexibility, scalability
and modularity are expected from the executiorfguiats to support the applications.
The digital processing architectures will evolvenfr current system-on-chips to mas-
sively parallel computers consisting of heterogeisesubsystems connected by a
network-on-chip.

The design complexity requires the elevation ofdbsign process to a higher level
of abstraction. At the system level, models ofremplatforms can be built that enable
hardware-software co-development and rapid, eagligth space exploration. Such



models provide quick feedback for the designersiatiee effect of their design deci-
sions to critical system metrics like performan€emplex interactions and the highly
dynamic nature of systems make their static armlgiffficult, which is why such
executable models are indispensable [1].

In this work we use ABSOLUT [2] methodology and Is@t as a backend for early
phase system level performance simulation of emigdgistems. The main modeling
phases in the virtual system modeling include $piegj computing platform’s capac-
ity model, application workload and allocation afnkload to computing resources of
the platform. The result of an allocation is awaftsystem model, which can be simu-
lated using the OSCI SystemC simulator to measer®pnance data, e.g. utilization
of platform resources.

Domain-Specific Modeling (DSM) raises the level albstraction beyond pro-
gramming by specifying the solution directly usidgmain concepts. It is used in
many application domains and in particular embedagjgulication development with
domain specific language (DSL) has been adoptedany companies [3].The final
products are generated from these high-level dpeatidns [4]. The benefits of DSM
come in many forms like easier modeling/programmpr@ductivity increase, better
code quality and maintenance ability [5].

In this paper we propose applying DSM in virtuasteyn modeling domain and
present a MetaEdit+[6] based prototype DSL that lbarused as a front-end to the
ABSOLUT performance modeling and simulation apphodcresembles a traditional
Graphical User Interface (GUI) of modeling tool ahdan be used like one. We ap-
plied the DSL in an example case study and prekentnhanced performance evalu-
ation workflow using DSM.

The rest of the paper is structured as followsChapter 2 system-level perfor-
mance modeling and evaluation and used ABSOLUTagubr are described. Chapter
3 discusses Domain-Specific Modeling. Chapter 4sqmés the DSL front-end for
ABSOLUT approach through applying the DSM method Votual system model
development phases. In Chapter 5 the ABSOLUT wovkfnd the use of the DSL in
it is presented and results of the case studyterers Chapter 6 gives conclusions.

2 System-level performance modeling and evaluation

Performance evaluation approaches can be dividedtimee categories: analytical
approach, simulations and measurements [7]. Thiytanad approach is suitable for
early performance evaluation, but the accuracyestilts is low because it requires
many simplifications and assumptions. In simulatijdhe execution of an application
is simulated using a computer program. Simulatioovigles more accurate results
than analysis since it is possible to incorporateametails of the system in the mod-
els. Simulations are suitable for early evaluatiginge they can be performed before
implementations of hardware and/or software areptered. Measurements can be
done with real applications, prototypes of applaa or benchmark programs that
mimic real software. An implementation of the ex@mu platform is, however, re-
quired in all cases and therefore measurementsoarguitable for early evaluation.



Performance simulation approaches are categoriredhé European EDA

Roadmap [8] into virtual systems, virtual platforared virtual prototypes:

e Virtual system approaches combine abstract appitahodels with an abstract
execution platform model. The applications are @spnted using e.g. workload
models, traces or task graphs but not as realctg&tns of processors. The plat-
form model typically has a high abstraction levedl @apacity models of compo-
nents instead of instruction set simulators.

e Virtual platform approaches use real applicatioftveare compiled to binary
form in simulations. The execution of the applicat is simulated on top of a
virtual platform model, which contains one or mamstruction set simulators.
The platform models need to be functionally complehd use accurate memory
maps to be able to execute the application binaries

e Virtual prototype approaches also use real apjpdinabinaries with instruction
set simulators. The virtual prototype approacheslehdull functionality of the
execution platform using hardware description laaggs like VHDL or Verilog.

ABSOLUT [2] is a virtual system performance simidatapproach intended for
early evaluation of embedded computer systems @nexploring the design space. It
is also a set of tools, which assist the desigrihr &pplication and platform model-
ing, allocation and configuration, simulation amsult visualization. It has been ap-
plied to several case studies ranging from contearganobile phone platforms to
future high-performance systems consisting of hedslrof components. Fig. 1 pre-
sents the main phases of ABSOLUT performance mogl@liethod.

Applications .
& Use Case Execution Platform
v v
Workload Model Platform Model
> Mapping <
v
Performance
Simulation
v
Analysis of Results

Fig. 1. Y-chart model of ABSOLUT performance modeling

Applications are modeled as layered workload mqdetsch ultimately consist of
abstract, instruction-like workload primitives. ®eal techniques have been devel-
oped to create workload models from informationrees such as application specifi-
cations or execution traces. A compiler-based &xidts to create workload models
automatically from application source code [9].



As application functionality is abstracted, the @bdexity of execution platform
models is also reduced especially with respechéoprocessing elements. The data
paths of processing elements need not be modelei@tail and data transfers and
storage are simulated only from the performancetpafi view. A capacity model of
platform can be rapidly constructed from componamts model library with the help
of a platform generation tool.

The virtual system model, constructed by allocatirgkload models on top of the
platform components, is simulated using the IEERdard SystemC [10] simulation
kernel and models based on the TLM standard [1dffoPRnance, power and energy
consumption is obtained from simulation by instrmtiveg the workload and/or plat-
form models with custom performance probes. Desigaa freely set the probes and
extract e.g. resource utilization, execution laienior interconnection traffic.

3 Domain-Specific M odeling

Basically, Domain-Specific Modeling is creating amsing modeling languages for
specific purposes. Domain-specificity of modelingans that key concepts of each
domain can be used as the modeling elements dditlgeiage. Modeling elements can
have graphical symbols and the use of DSL is dgtpdcing these elements on dia-
gram according language modeling rules. Diagramdenwaith DSL are formal de-
scriptions of systems and applications and as suithble for documentation, analy-
sis and transforming them to other forms like seutode or other artifacts. In par-
ticular, the generation features complete the bisndfat DSM and DSLs provide.

Tool support for applying DSM exists in commerciatademic and open source
tools [12]. True DSM tools enable developing of nB®L, which can be run on top
of the tool or as a standalone program dependinfpeotool. Increasing interest to-
wards DSM has brought DSM features also to IDE$.[13

DSLs are often made to very specific domains insigipanies, which are not in
public use. However, DSLs are applied in the gregdhiser interfaces of some em-
bedded system development tools, too. For exar@uE|uent Studio [14] and Simics
[15] include DSL that can be used for modeling xlered system. These apply for
somewhat similar purposes as ABSOLUT and have finereimilar modeling phas-
es. However, the modeling notions differ due methogly differences. In addition, it
is important to notice the fundamental differene¢neen the ABSOLUT DSL front-
end and the DSLs of mentioned tools. Neither GWIsDSLs of the mentioned tools
are implemented on an actual DSM tool as the femt-presented in this paper is.

4 DSL front-end for virtual system modeling

Virtual systems for performance simulations aresrftnade from existing compo-
nents and in an ideal case, the modeling shouldeattire much coding. However,
the platform model needs to be composed and caefigu’he application modeling
requires making a high-level model of applicatidhe allocation of application ele-
ments to the processing elements of platform misdehe of the modeling phases.



In this work, the DSM approach is applied to thedelong phasesrhe same DSM
environment that consists of a DSM tool, a few D@hsl ABSOLUT tools applies
also for building simulateable models, running dations and analyzing results.

41 DSM workflow and environment

Although every domain has its special featurespekflow consisting of the next four
phases for developing DSLs for different domains lsa used [16]:

1. Identifying abstractions and how they work together

2. Specifying the language concepts and their ruletgrmodel)

3. Creating the visual representation of the langyagtation)

4. Defining the generators for model checking, codeutnentation, etc.

In our case, the Y-chart model shows clearly thaleling phases and their inter-
relations. Consequently, it was natural to procemdards modeling phase specific
abstractions. The existing ABSOLUT model librarydaaxperiences of tools of the
domain were the basis according which the languageepts, properties, rules and
notations were defined. The notation design inqiype development phase had nat-
urally low priority. In the generator definition)e goal was to enable the usage of
the existing ABSOLUT tools and generation of coritpatmid- representations.

Proceeding according to the workflow requires etiperof both the problem do-
main and the DSM. Additionally an appropriate DSMltis needed. In this work, the
DSM tool MetaEdit+ 4.5 Workbench [6] developed betsiCase has been used and
the solution presented here contains some toolifsp@otions. The tool provides
different diagram editors for modeling with the D3&Mhguages, support for the DSL
and generator definition and is upgraded with nevgions by the tool vendor.

4.2  DSL for workload modeling

The workload modeling DSL is developed for the cdemgased workload generator
of ABSOLUT, which produces workload models from mat C/C++ code. Any ap-
plication modeling DSL that can generate C codetharefore be used in producing
the ABSOLUT compatible workload model. Existing Gde is also used for work-
load generation. The workload modeling DSL of ABS@Lfront-end is targeted for
workload model and workload trace configuration gederation.

The workload modeling is made with the diagram @négtions ofMorkload Mod-
eling Graph, on which the DSL objects and connections aregalakEig. 2 presents an
example of such a diagram. It contains tWorkload Model objects, which both are
linked to twoWorkload Trace objects. The object symbols contain symbol names a
information about the status of the workload modatsl traces. The MetaEdit+
toolbar contains the modeling elements of the gtgpb and the generator buttons.

The workload modeling scheme consists of two phasésboth have an own ob-
ject notation in this solution. Thérkload Model object is used for defining and
generating the workload model according to the atljpeoperties. Properties are used



to select the valid external workload model germrahe generation script and the
source code folder. The MERL workload model gemerasses the property infor-
mation and generates the workload model. Sewdtakload Model objects can be
used in a single diagram to generate different ieak models from the same source
code or from many different source codes.

The Workload Trace object is used to make the workload trace thatbeaallocat-
ed to the platform model. It needs a link to Werkload Model object defining the
workload model that is executed in trace generafldre properties of the/orkload
Trace object define all the parameters that are neededéecute the workload model.
The object has also a property, which defines pa#fl to store the generated trace.

EWorklﬂad Modeling diagram: Test workload, April 4, 2012, 13:47
Graph Edit Wiew Types Format Help

RS +hiB oo 0+ Q0OE X wws

BB oo [workloadModelGenerator |
R TR WORKLOAD MODEL :
WORKLOAD MODEL et @
Status: Generated Status: Generated
i WORKLOAD TRACE
WORKLOAD TRACE e rvorsioh &
WOROKh%Ang;iéACE & Decode ohversion

Status: Unaenerated ||«

Status: Generated

Status: Generated |
Active: Playhack: Workloe! Subgraph{s): None Grid: 10@10 Snap [ Shew | & |_1§6%L! &

Fig. 2. Diagram presentation &¥orkload Modeling Graph

The MERL generator first runs the workload modeaitthroduces the workload trace
and then stores the trace files to defined patme@ded workload trace consists of
files of which each contains trace of one workleaddel thread. Severa&lorkioad
Trace objects can be linked to singlgorkload Model object, which enables produc-
ing different workload traces from the workload mbbased on the parameters.

4.3 DSL for platform modeling

The key concepts that are needed in the platformiethn are the various hardware
elements (see Table 1). The element types andphgierties are specified with dif-
ferent property sets. In addition to the objeatsns relationship types and role types



are needed for linkage between hardware eleménizrge platforms are modeled,
the sub-system object could be applied in the Ofl. Modeling rules can be includ-
ed in the DSL to prevent the designer from makimgadssible or erroneous connec-
tions between elements or other kind of modelingtahies.

A diagram editor is the only alternative for a Mdmsed platform modeling. Mod-
eling work convenience depends of the modeling etém By using different sym-
bols for the language concepts, perceiving of tagfggm model is easier. Different
shapes, colors and text of the component objectbsls enable this. The relationship
and role symbols can also have tuned symbolsgietlare many of them or if they
have properties.

Generators can have more than one purpose in #ifonph modeling DSL.
Checkup generators are another way to confirm déopm validity in addition to the
rules set in the DSL definition. The main purpo$ehe generator in the platform
modeling is to produce a description of a platfdhat can be used in the simulation
phase. Generators can also be used to update thelingpelement list, which is im-
portant when the components are modeled elsewhere.

Our DSL for platform modeling consists of platfoimbjects, their relationships,
roles, modeling rules and the platform model to XIgé&nerator. The objects and
other elements of the platform modeling DSL areetisn Table 1.

Table 1. Modeling elements of platform modeling DSL.

Element Description

Processor Object is used to model processor and acceleratoponents.
Memory Object is used to model memory components.

Bus Object is used to model bus components.

Interface Object is used to model interface of subsystem.

Subsystem Object is used to model subsystems of platform.

Router Object is used to model connections between sutasgst
Connection Relationship used to model all connections in tldf@m diagram.
Master Role that connects master component to connection.

Save Role that connects slave component to connection.

The integration of the DSL with ABSOLUT and its copoment library is established
by importing the component library description ke tDSL. The import updates the
pull down list of each hardware element. For exanplnew processor type can be
selected from the pull down list oProcessor object types when an updated
ABSOLUT component library definition has been ingol:

An example ARM processor platform, modeled in agdian presentation of the
Platform Modeling Graph is presented in Fig. 3. Using of the platform modeDSL
resembles the use of many other platform-modelaaist Components are picked
from toolbar, placed, connected to other componantsconfigured from the proper-
ties of the particular component type.

Subsystem objects are also defined in the DSL to help thel@ling of large plat-
forms in smaller parts. When they are used, thelewpl of platform is composed
from Subsystem andRouter objects. The architecture of each subsystem canduk



eled with a separate platform diagram as Subsystgatt decomposition. Thater-
face objects are used inside them to define how theycammected to other subsys-
tems.

Arm Dma_controller
armi dma
| |
bus
| |
B
Sdram
net_it storage

Fig. 3. Platform model made with platform modeling DSL

The MERL generator is used to generate XML desorigtof the modeled platforms.
The generator goes through all the platform diagrémt are related to the platform
model and includes their connections, componentsth@ whole platform structure
into the XML file.

4.4 DSL for allocation

An allocation DSL should contain objects presentipglication model elements and
computing resources of platform. Some way to lipplecation model elements to
selected platform model elements is also requitedenerator for generating alloca-
tion file belongs also to allocation DSL.

Object locations on a diagram can be utilized i used DSM tool for building
the allocation DSL. The links between applicatiamd golatform elements can be
based on object locations. The allocation DSL tise#\location Area and theAllo-
cation to Resource allocation objects. The application elements sams$ of the work-
load, and thaMorkload Thread objects and th&Vorkload Thread Group objects are
used in the allocation diagram in addition to tllecation objects. The location of
workload objects with respect to the allocationeahg defines the allocation.

There are several ways to bring workload item dbjéx the diagram. They can be
picked from the object list, which shows existirtgjexts, or they can be created man-
ually from the scratch. They can also be generatedrding to corresponding work-
load traces or according prompt input.

The MERL generator producing the allocation fileed¢s all theAllocation to Re-
source objects that are placed on tAHocation Area object. The generator also de-
tects items of the workload on top of thkocation to Resource objects and forms the
allocation file accordingly. When a workload itesadn theAllocation to Resource



object, which has the valid resource property dedAtlocation to Resource object is
on theAllocation Area object, the workload item is correctly placed. Wags are
generated on the allocation objects when the abjet placed wrongly. Thiloca-
tion Area object contains also a listing of the allocatiaich changes according to
the locations of the other objects in the diagraie generator producing the listing
can also print warnings, because #hikcation Area object has information of the
workload items and the platform resources, whiah lea used in composing the allo-
cation.

Dynamic symbols are used as guidance for the desigmvards valid allocations.
The symbols of workload objects are made dynamd the symbols are changing
during the allocation work depending how they dex@d. A correctly placed work-
load item has symbol, which is emphasized withopellWrongly placed workload
item has two different symbols.

Fig. 4 shows an example allocation, modeled iregrmim presentation of ti#élo-
cation Modeling Graph. It contains theAllocation Area object, Allocation to Resource
objects andNorkload Thread objects. The allocation in it contains errors, which are
reported in the allocation listing.

ALLOCATION AREA:

Allocation listing: CPU allocation g

Allocation 1o 53 CPU. pprnmr 20

Allocation to subsystem objects inside allocation Pagr—
area; piEy-10
#7264 allocation CPU allocation s e = aw 3
Workload items inside allocation area; degodeabsinti {0

; : T - @
decadeP-absinth_t0 decodeP-absinth_t2 p
decodeP-absinth_t1 encode-absinth_to ercodo-ahsintt 10
encode-ahsinth_tz2 absinth-t0.gz ahsinth-t2.9z 9

record-t0 play-td
Workload items missing from allocation area;

'em:n'de—at_]simh_ﬂ | ) (264 allocation

Workload items which should not be on allocation Allocation to 55 =264 Acceleratar

area: ;

absinth-tl.gz absinth-12.9z e
J e

‘Threads allocated to %264 Accelerator docodeP-absinif 1T

decodeP-absinth_t1 i il

encode-ahsinth_t2

Threads allocated to CPU

decodeP-absinth_t0 | encede-absii 1
encade-ahsinth_to
recnrd_tu P w3 (AL r A =2 O oo = [ T
eyl "To storage : absih-10.g2
; (T 2
Allocation to 58 st
ILLEGAL ALLOCATION DETECTED! | G
i
BBSInh-12.67

|

! e

I -
|

i

Fig. 4. Allocation is illegal because two workload iterimsglevant to selected workload, are
placed on the allocation area and one relevantdfemworkload is not inside allocation objects.



5 Modeling with ABSOLUT DSL

The updated workflow of the ABSOLUT modeling enheaidy the developed DSLs
is described using a video player as a demongtratise.

51 ABSOLUT workflow with DSL

The ABSOLUT workflow presented earlier in Fig. ledonot change dramatically
because of DSLs. The Y-chart flow is still the lsasf the modeling method. The
main changes are related to the modeling phaséshwhe enhanced with the DSLs.
The developed front-end can also be used for pegoce simulations and simulation
result analysis but this does not change the dusoakflow.

The workload modeling DSL gathers all workload modginformation to one di-
agram. The workload modeling can be therefore meshagore efficiently. Different
versions of workload models and workload traces lmargenerated in a controlled
way and stored in an appropriate location.

The platform modeling DSL speeds up the compositibplatform models from
the ABSOLUT model library components and makegsslerror prone by avoiding
manual editing of XML documents. The platform dgséon generator produces an
XML file, which ABSOLUT tools need to produce thiafform source code.

Allocation DSL enables drag and drop like method dflocation of workload
items to platform resources. Workload items camnty@orted which reduces effort. It
guides the designer and alerts from illegal allocet In addition to the graphical
allocation, a textual allocation listing is visildaring the allocation phase. Allocation
description files are generated in a format suidibl the ABSOLUT tools.

The generators are used to start ABSOLUT toolscamapilers, which produce the
simulation model. There is also a generator, whigts the performance simulation.

5.2 Casestudy

The video player case study has been made witddkeribed front-end. The player
uses H264 high definition video coding which isdige high quality mobile devices.
The ABSOLUT workload model was generated from therosource FFMPEG [17]
source code. The workload generation DSL was usséttthé/Norkload Model con-
figuration and single and two thread configuratiaisthe Workload Trace object.
Workload traces were generated by the generatoighesed to execute the workload
models.

Our test case used an OMAP4 like platform [18]. Pletform model was com-
posed from platform modeling elements with our fplath modeling DSL. The plat-
form model is a simplified version of the OMAP4 lgug. includes the dual-core CPU
for testing of different allocations. The XML degtion of the modeled platform was
produced with the platform description generator.

Two different allocations were made with the alkima DSL so that the effect of
changing the workload allocation could be detectie workload items were im-



ported and allocation objects instantiated. Thenaltocation was composed and the
allocation description files generated. The samg aame for both of the workloads.

SystemC simulations were performed with the OMARatfprm model and two
pairs of allocation files and workload models. Th#ization of the ARM cores was
the property, which was measured from the simulatid he single-threaded version
of the application utilizes the Core 0 100 %, the Core 1 is not used at all. In the
dual-threaded version, the load is evenly divideddth cores, which shows that plat-
form capacity is nicely harnessed. The observeliration rates for the dual-core
CPU of the multi-threaded case are presented ur&i§.

Yo %
100 100
80 80
60 L. 60 il I
40 40 il
20 20
0 0

0 1 2 3 4 ] o0 1 2 3 4  ts]

Fig. 5. Data processing load of both cores in the twoathnedeo coding case.

6 Conclusions

This paper describes a way of utilizing the DSM hoet on the domain of virtual
system modeling. The resulting prototype DSL set ba used as a modeling and
simulation front-end to the ABSOLUT virtual systenodeling tools.

Our experience of DSM was near to zero when thé&wegan and notion of DSM
has become clearer in the course of the work. Kpereences of the DSM and from
the used DSM tool are positive. The DSLs were dped incrementally in smalls
steps and they were tested with example data.thAdle DSLs have evolved steadily
without major tool or DSM approach related problems

The developed DSLs improve the usability of the 8R®IT, which so far has
been used without a graphical front-end. Especidléy learning curve shortens due
more user-friendly modeling. In particular, the Dfsant-end makes modeling easier
for designers who are not experienced with SystgtdCand TLM [11].

The phases of the ABSOLUT virtual system modelingorkload modeling, plat-
form modeling and allocation modeling - were catrigit with the developed DSL in
a video player case study. The performance sinmnatias carried out for two system
models from which the performance data was recorflecording to our experiences,
the DSL-aided workload, platform and allocation miaay is a workable idea.

Our work continues with the refinement of the ABSOL DSL. The usage of a
DSM tool for simulation observation and simulati@sult analysis front-end is also
an interesting research direction that has alréey pretested. There are also possi-
bilities to explore how this sort of DSM approaalits to other embedded system
modeling phases.



Acknowledgements. This work is supported by the European Commisaiwh Tekes
— the Finnish Funding Agency for Technology andolation - under the grant
agreement ARTEMIS-2010-1-269362 PRESTO.

The adoption of DSM principles and environment wasded by experts of

MetaCase. Especially Mr. Janne Luoma contributezblaing issues faced during the
work. Dr. Juha-Pekka Tolvanen receives also outitgde for professional com-
ments.

7

10.

11.
12.
13.
14.
15.
16.

17.
18.

References

. Gerstlauer, A., Chakravarty, S., Kathuria, M., Razagh Abstract System-Level Models

for Early Performance and Power Exploration. Inh1&sia and South Pacific Design Au-
tomation Conference, pp. 213-218. IEEE (2012).

. Kreku J., Hoppari M., Kestila T., Qu Y., SoininerR], Andersson P., Tiensyrja K. Com-

bining UML2 Application and SystemC Platform Modedi for Performance Evaluation
of Real-Time Embedded Systems, 18p. EURASIP JourmalEmbedded Systems.
Hindawi Publishing Corporation (2008).

. Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellx, What Kinds of Nails Need a Do-

main-Specific Hammer?, IEEE Software, July/Aug, 200

. DSM Forum, http://www.dsmforum.org/ (2012).
. Kelly, S., Tolvanen, J.-P.: Domain-Specific ModetinEnabling full code generation,

Wiley-IEEE Computer Society Press (2008).

. Domain-Specific Modeling with MetaEdit+, http://wwmetacase.com (2012).
. Jain, R.: The Art of Computer Systems Performancelydiga Techniques for Experi-

mental Design, Measurement, Simulation and Model&®$ p.. John Wiley & Sons, Inc.
(1991).

. European EDA Roadmap. Technical report, 352 p. CATRE20B9).
. Kreku, J., Tiensyrja, K., Vanmeerbeek, G.: Automatiorkload generation for system-

level exploration based on a modified GCC compilerDesign, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 369-3TBEE (2010).

Grotker, T. and Liao, S. and Martin, G. and Swan, §stem design with SystemC.
Springer, 2002.

SystemC Transaction-level Modeling Standard, TLM-Bt€p://www.accelera.org (2012).
DSM Tools, http://www.dsmforum.org/tools.html (2012

Eclipse Modeling Project, http://www.eclipse.orgiheting/ (2012).

CoFluent Studio, http://www.cofluentdesign.com (2012

Wind River Simics, http://www.windriver.com/produfgsnics/ (2012).

Tolvanen, J.-P.: Domain-Specific Modeling: How t@i$ Defining Your Own Language,
http://www.devx.com/enterprise/Article/30550 (2006)

FFmpeg, http://www.ffmpeg.org/ (2012).

OMAP Mobile Processors, http://www.ti.com/ (2012).



