DesignScript
a domain specific language for architecturalcomputing

Robert Aish Emmanuel Mendoza
Bartlett School of Architecture, UCL ARM Ltd
robert.aish@ucl.ac.uk jun.mendoza@arm.com

Abstract

DesignScript is a muHparadigm domanspecific eneuser 1. Introduction

languageand modelling environment for architectural and Inthis paper the term architectt

engineering computation. DesignScript implements both nal sense referring to the design of buildings arttlémore

visual data flowprogramming and imperative programming general sense as the schematic design of engineering sys-

The novice user initiallydevelops his data flow program tems DesignScript sits firmly within a branch of domain

through the familiar visual programmimgvironment. This  specific computing bratly referred to as Computer Aided

environments effectively an intuitive user interface mask- Design (CAD). The earliesixample of CAD isSketchPad

ing the underlying DesignScript language. The DesignScript developedn 1963by Ivan Sutherlandl]. Since therthere

language and its related user interface addresses three issud#s been proliferationof CAD systemdor different appli-

the domain specific requirements of architectural and engi- cation domaindt is possile togenerallydescribe CAD sys-

neeing computing, the scalabiliigsuesencountered when  tensand their use with three characteristic dimensions:

visual data flow programming is applied to complex design

scenarios and the abstraction barriers encountered when u

ers transition from data flow to imperative programming At one extreme there are ukd@main specific CAD systems
where the user is presented wathredefined schema of do-

41 6domain specific to general

Categories and Subject Desptors  D.3.3 [Software and man specific components whicban be assemblé into

its engineering: Software notations and tocisGeneral models using predefined intercomponent relationships.
programming languagesLanguage types Imperative This schema typically represe
languages, Data flow languagédultiparadigm languages  such asa prefabricated buildingsystem These systemare
Compilers- Dynamic compilersContext specific lan- intendedfor users who are doain experts. These systems

guages- Saipting languages, Domain specific languages,
Visual languagesApplied Computing- Physical sciences
and engineering Engineering- Computeraided design;
Applied Computing- Arts and humanities Architecture
(buildings)— Computeraided design

represent the constraints and conventions of established en-
gineering and construction practice.

At the other extreme there are completely general purpose
systems with programming and geometry libraries which are
intendedfor users who are both domain experts and accom-
General Terms Design,Human Factord,anguages plishedsoftware developer

In between these two extremibereare hybridsystens
which combinepredefined domain specific components
with more general purpose programmiagd geometry
tools Thesetools can be used bynore proficient users to
customiseand extend the CAD systdwy definingnew com-
ponents Thesehybrid CAD systems are used in more open
end application domains, such as advanced building archi-
tecture, where innovatiobeyond curent conventions (and

Keywords exploratory designscalability; extensibility;
learningto program enduser progrening; abstractn bar-
riers abstraction gradient



s,

6. C# classes added using ‘zero touch”

2. As the number of nodes and

L T T A R R TR
5. Encapsulation, via user functions [Figure 7]

arcs increases, the visual
complexity increases ,
non-linearly, reducing

the effectiveness /

of data flow /

P 3. The skill level required for
programming in conventional

imperative high level languages 4. Hybrid Data Flow-Imperative programming [Figure 6]

1. Visual dataflow
programming provides
an easily accessible

1. Visual dataflow
programming provides

an easily accessible 3. Text based Data Flow programming [Figure 5]

4. The increase in skills required to move

Increasing skills required
Increasing skills required

approach for simple Ve from data flow programming to regular approach for simple ‘
computational design P e high level languages may present computational design 2. Node to Cad.e: As the number of nodes and arcs increases, a
problems ‘abstraction barriers’ and be beyond the problems region of the visual data flow graph can be converted to text based
_// range of novice programmers code, thus reducing visual complexity and ‘seeding’ the user's code
[Figure 4] with the logic previously developed in visual data flow programing
Increasing complexity of result’ Increasing complexity of result
Figure 1. The sequence of increasing programming Figure 2. The objective of DesignScript is help the use
complexity. Abstraction barriers and consequential harness computing abstractions, but without these bec
discontinuity may be encountered with existing domai ing abstraction barriers. This is achieved by creating a
specific applications whemansitioning from visual data abstraction gradient of easily assimilated intermediate
flow programming to text based programming. between visual data flow drtext imperative programmin
beyord afixed schema) is importanFor exampleit is en- on visual data flow programming attract an initial use with
tirely feasible fora ‘-@mfe’ buil di nga t emdlsele dxglosa@esignmodels this techniquelo not
uniquearchitectural formgcustom components arsgpecial- scale to complex real world design projd&k

isedfabricationtechniques

The architecture of buildings is not a single application 1.3 0 i Idimen&ion
domain. Buidings areessentially the integration of a number pomain specific data flow applications have enabled pro-
of subsystems for example structure, services, cladding, — gramming to be accessible to architectural users without any
etc) whichare the responsibility of different design and en- prior computing experience. However these applications are

gineering disciplines. Often each disciplinesseparatele- limited because they present atricted subset ofmnputng

sign and engineering owputer applications in what are ef-  conceptsThe paradox of domain specific computing is that

fectively separate ‘verticatlcanhél e lser develop @t programming skills but
To create a truly integrated building requires that the con-the familiarity with these skillsnay trapthe user within a

tribution of each of these disciplinésintegrated. Thisn simplified version of programming.

turn requires that the different modelling toafsintegrated. Scalability ancusability issues arise when data flow pro-

Ideally the differentdomain specific applicatiorshould gramming haso beapplied to more complex computational
be basedn a common seof computing abstractionand  {55ks found in architectural desigwhile regular program-
these abstractiorshould be expose the users so that in- ming and scripting languages offer a more complete set of
ter-domain integration can be created to suit the needs Ofcomputational concepts, learning theselaages often pre-
eachnewbudi ng project. These ‘danisiabstdctdbd bafiefsStd folite biseriprBg@ammers
tion’ issuesare discussed bush[2]. such as architecf&igure 1]4].

In this sensehie aimof a domain specific afipation as
an educational toas notto avoid abstractiondutto avoid
It is essential that an effective domain specific system sup-abstractiondecoming a baier.
ports a scale of use from simple exploratory model to com- |t isimportant to recognise thatiamain specific compu-
plex detailed modelsArchitectural design often starts with  ting systenshould not be designedound a fixed definition
exploratory sketch models, involving just a fatstracige- of the task oto anticipatea fixed set of user skillsThe use
ometric elements and relationships. At the exploratory stageof the system will change the user and in turn change how
the architectural user may only be representing some specuthe swtem is used.
lative design intenvithout committing to particular dimen- In practice all these dimensions (domain specific to ab-
sions, materials or construction processes. stract, scalability and skills) interact. It is not possible to ad-

During the course of the design process this model will dress the scalability, extensibility and integration issues
be expanded to potentially hundreds of thousands compo-without first addressing the skills issiore generallya do-
nents and the model will be developed from an initial ab- main specific computing systewill only besuccessful if it
stractgeometry to an assembly of highly specific construc- is more thardomain specifi@and introduce the user tonore
tion componentsWhile domain specific application based generalpurposecomputing ideaand their applicatian

1.2 Scaling from exploratory design to detail design



2. DesignScript X, Y and Z coordinates artien the use ofreplication
wherea 2D collection of pointthe pointArray] is created

DesignScript implements a series of intermediate program-zs the cartesian product of a set of X ancb¥rdinates

ming tecimiques between visual data flow programming and Essentially replication blurrs the distinction between the

regular text based programming [Eig 2]. This provide ‘ t yqb @single vaableand the'type’ of a collection.

an abstraction gradiemthich allows the gradual introduc-

tion of more advanced computing abstractions and notation |mperative language This uses the familiar Gtyle pro-
graning syntax.t is a nore powerful and prEse progran-

Visual data flow programming This uses the familiar  jng paradigm where standard control flow constructs such as

visual'graphnodearc programming Ul. Itis anideal entry  "jf*, "for" and "while" statements can be utilisgigure §

pointwhere the user can develdpe fundamentgbrogram-

mingskill thatof expresigideas in a logical and executable |DE: DesignScript includes a conventional IDE to support

form. Thevisual graphknodearc conventionsurreptitiously the development of iterative and recursivections angbro-

introduces theiser to the o n c e p t byordquiring lymp e "grams whichare text based amnnot be debugged hyac-

to match thétyp€e of the outputof an upstream nodeith ing through a visual data flow programFjgure 7.

the‘typ€ expecedas input to @lownstream nodéHowever,

visual programmingcan become extremely verbose and [jveness DesignScriptis a dynamic language and supports

does not scale to more complex progiragrasls. [Figure 4] ‘“liveness' akforiegploratonsprogransnng t i
Livenessncludes directly reggndingto user actions such as
Nodeto-Code Effectively the visual programing eimon- changes in program logicdynamic interactionusing
ment is a graphical Ul whereach nodas representety “ s | itd @hanges in the value of variabkesd the direct
compiled DesignScript source codeh e  *“taacooddee ' pnfiafipulation of control points in the graphienodel
cess merely exposes thisderlying codein the selected Livenessis synonymous WitrREPL [Readevalprint
nodesasa single‘code block node This dramaticallyre- loop] with live interactiorbetween the user and theogram
duces thevisual complexityo f t he gr a'p ht reggdLivends§RE®ISbehaviour is only apgble wherDe-
user ' s c oiduellogicipteviousty developed signScriptis continuously running in Automatic Mode a

visual programming environment sual Dynamo.
Text based data flow languageThis usescorventionalC
style syntaxbut is simplified because there are no explicit Typing: DesignScript supports optional typing/hen vari-
flow control statements.|&w control is determined by the  ables are declared with a type, it aids the compiler to stati-
data flowdependenciesetween thevariables[Figure 5] cally enforce typesafety. For variables with no assigned
type, the compiler and the virtual machine will perform both

Replication Thisallows the user to create and operate on  gtatic and dynamic type inferencing to determine the best
collections without initially needingp understand iteration  ye 10 assign to a variable.

[Figures 3, 4 and]5This is adomain specific funabnality
of partcularimportancein the design of buildings, which
arecomposed of collectiorsuch adloor, columms, beams,
facade elements, et&s the architect explores design
options these colleicins may vary in size and in riann
the example in Figuresand 5we show a single point
[the controlPoin{ created using single values for the

Domain speific syntax DesignScript avoids addirgpm-
plex domain specific syntax. The text based data flow lan-
guage combined with replicatiactuallyrepresents aim-
plification conpared tathe equivalenimperativelanguage
The only additional syntax are replication guides [Figure 3].
Tutorial and reference documentation is availalélE[7]

Replication in DesignScript DataFlow Language

singlevalueResult = 1 + 10; 5 Scaling: DesignScript can scale from simple exploratory
/711 data flow models [Figures, 5, 6 and 7] to the full complex-
Z;?P‘z‘ﬁe;;it gy R L - ity of a completed building. [Figures 8, 9 and 10]
cartesi;nResult = {1,2}<1> + {10,20}<2>; >
// {{11,32},{21,,22}3 ) From abstract to domain specificDesignScript can also be
t;j”j@gje;;r;i;lgg}; {1,2}<2> + {10,20}<1>; used as a completely general purpose programmingdool
build otherdomain specific modelling gticatiors. Figure 8

illustrates one such application whietodekthe design and
Figure 3. Replication in DesignScript enables the userto  behaviour of the MIP$nicroprocessor pipile [8]. In this
operate directly on coll application each codebocioderepresents the identifiable
the syntax 1> wheren controls the order in which the in regions of the processor and the data flow represents
put collections are used to build the output collection. communication between these i@tg.




heightFactor

translate the points using the Z
axis and the array of heights

measure the distance from the control point to
the pont array: use the inverse distance as the
height mutiplied by the heighiFactor

Geometry.Transiate

Construct the control Point

‘control point.

geometry

Create Curves: directly in one direction, and using the transpose +
of the point array in the other direction

NurbsCurve.ByPoints

\ direction

distance

This model constructs a reponsive array of paints
based in the distance of sach point to 3 control
point. which can be manipulsted by the user

Figure 4. Visual Data Flow prograing: here a set of curves is drawn through a 2D array of points, whe
the height of the points is based on the inverse distance to a control point.

heightFactor

Data Flow Code
heightFactor pointArray = Point.ByCoordinates((@..20..4)<1>, (0..20..4)<2>, @);

control point

controlPoint heights = heightFactor/pointArray.DistanceTo(controlPoint);
translatedPointArray = pointArray.Translate(Vector.ZAxis(), heights);
transposedPointArray = List.Transpose(translatedPointArray);
nurbsCurvel = NurbsCurve.ByPoints(translatedPointArray );

nurbsCurve2 = NurbsCurve.ByPoints(transposedPointArray);

v ovivivivov

This model constructs a reponsive array of points
based in the distance of each paint to a control
point, which can be manipulated by the user

> >
4 List
4 [0] List
[0] Point(x = @.000, ¥
[1] Point(X - @.000, Y
[2] Point(x = @.000, ¥
[3] Point(X = @.080, Y
[4] Point(x = 0.008,
[5] Point(X - @.000, Y
4 [1] List
[0] Point(x = 4.000, ¥
[1] Point(X = 4.200
[2] Point(x = 4.000,
[3] Point(X = 4.000,
[4] Point(x = 2.008,
[5] Point(X - 4.000, Y - 20.00
4 [2] List
[e] Point(X - 8.000, Y - ©.000

Figure 5. Text based data flow programmingDesignScript. Flow control isased on the graph dependen:
cies of the original data flow prografdotice he ability to diectly operate on collectiongithout iteration,

heightFactor

() 133 >

‘Construct the control Point

control point

This mode! constructs a reponsive aray of points
based in the distance of each point o a control
point, which can be manipulated by the user

Imperative Code Block
heightFactor | heightFactor;
controlPoint | controlPoint;
pointArray ={}
translatedPointArray ={};
transposedPointArray = {
nurbsCurvel ={};
nurbsCurve2 ={};
[Imperative]
{
XRange = (@..20..4);
yRange = (8..20..4);

xCount = Count(xRange);
yCount = Count(yRange);

for (i in @..(xCount-1))

for (j in @..(yCount-1))
{

1

pointArray[i][j] = Point.ByCoordinates(xRange[i], yRange[]], 8);

for (i in @..(xCount-1))
for (j in @..(yCount-1))

height = heightFactor/pointArray[i][].DistanceTo(controlPoint);
translatedPointArray[1][j] = pointArray[i][]].Translate(Vector.ZAxis(

nurbsCurvel[i] = NurbsCurve.ByPoints(translatedPointArray[i]);
i

transposedPointArray = List.Transpose(translatedPointarray);

for (i in @..(yCount-1))

{
¥

nurbsCurve2[i] = NurbsCurve.ByPoints(transposedPointArray[i]);

i

vovwvivivvlv

> >
f 4 st
4 [e] List
[e] Point(x = e.e08, Y = 6.068
[1] Point(x v
[2] Point(x Y=
[3] Point(x ¥ = 12.00
[=] Point(x ¥ = 15.00
[5] Point(x Y = 20.00
4 [1] vist
[e] Point(x ¥ = e.e00
[1] Point(x v
[2] Point(x e
[31 Point(x ¥ = 12.00
[2] Point(x ¥ - 16.00
[5] Point(x = ¥ = 20.00
4 [2] List
[e] Point(x = 5.008, Y = 0.068

Figure6. The equi valent program in the Desi gyeSymtaxi p
andflow control statementahich allow the explicitly iteratiohrough collections.



starter function G DesignScript Editor(Lite) - B

def Fib iStart t .
f T der () File Edit Run Set Help

B 4 Find Text \
/1 seed with starter values; R ) B
returnCollection = {0,1};
CBN_DS_0.ds x StartUp %

return = FibonacciRecursion(returnCollection, count-1); | [¥"""i§def FibonacciRecursion (collection : int[], countDown : int)

1 11f{

12 return = [Imperative]

13

14 /[ check whether we have got to the end
- 15 if (countDown == @) return = collection;

16

17 iCount = Count(collection);

Integer Slider

Code Block
howMany |result = FibonacciStarter(howMany); | >

19 collection[iCount] = collection[iCount - 2] + collection[iCount - 1];

21% countDown = countDown-1;
2 /7 without decrementing countDown, this function would call itself idefinitely;

24 return = FibonacciRecursion(collection, countDown);

Name Object Type Parameters / Values
countDown int 2
iCount int 3
= collection array[4] array[4]
collection[0] int 1
collection(1] int 1
collection[2] int 2
collection[3] int 3

Output Watch Errors

Line: 21 Col:3

Figure7. Desi gnScript supports a conventional | DE. I n C
using the visual representation so there is no need for an IDE. However with Impen@gizaming where there is iterati
and recursive logic, then it is important that the user can delve into the program execution.

3. Design and implementation: Only modified nodes and those that depend on the

In visual data flow programingach node is represented by Medified nodes are feompiled and rexecuted, thus giving
compiled DesignScript source codenperative code blocks ~ Mghly efficient dynamic executionOther DesignScript
are treated as nodes in the data flow grapk. DesignScript ~ nodes/source code can include calls to C#, thereby giving
compiler then performs standard optimization to the input 2CCesS t0 extensive external libraries.

source code and emits an execlgdbrmat that contains the ;
following: (1) Symbolic information (2) Executable 4. Conclusions

bytecode (3) Dependency graph nodes. A virtual machineDesignScript addresesa particular form of domain specific
loads this data and performs runtime execution while computing which is required to be scalable and extensible
enforcing dataflow semantics. The virtual machine is driven while alsoacing as a learning environmerDesignScript

by the d&a flow dependency graph where each node pointsillustrates themaxim that an effective domain specific

to a set of bytecode to be interpreted in sequence. application has to be more than domain dipeci

Figure 8. Using the hybrid visual and text based programing to model the MiB®processor pipeline



Mask ot sort and grou
Query data I it o
foravallable. byt area  OTAIMING Panels by Apply color override in view
parameters Zq B . T
ol b Excel Export
Get Al Panels = e~ xcel Expor

color symbology : Create Random
/Colours \

Figure 9. Data flow programming used in the design of
the 'Oceanwide’ high rise building by Foster+Partners

We have found that a hybrid approach combining textual and
visual programming and combining data flow and
imperative programmingllowstheuser to model the overall
processs a visual diagram, while the logif the individual
processesan beprogammedusing thetext based language.

Acknowledgements

The authors would like to acknowledge the contribution of

the DesignScript development team at the Autodesk
Singapore Research and Development Centre.

DesignScript is an open source projact is the core com-
putational engi nSudidvi alpiphi clae i
The authas would like to thank Foster+Partners fiarmis-

sion touse of the illustrations in Figures 9 and 10.

References

[1] Ivan Sutherland Sketchpatl MIT (1963.
2l Ri chard Rush “The Building Syst

| AlA (1986)
3] Margaret M. Burnett et al., “Sc
‘J Languages ” in Computer 2845 no.

[ftp://ftp.cs.orst.edu/pub/burnett/ComputaalingUp

Bict

E0 O o | 1995.pd]
: m 1y IIIA l‘@ ! [4] Thomas Green and Alan BlackwellCogni t i ve Di mens
&l"l, ﬁ“j "'"LJ‘ I nformati on  Aordl eMemiont 52 (1998 t u't
P.&; iﬁ&i qu/ [www.cl.cam.ac.uk/~afh21/CognitiveDimensions/CDtuto-
1Y e \. 1./ A\ rial.pdf]

-

[5] REPL [https://en.wikipe-
‘ / dia.org/wiki/Read%E2%80%93eval%E2%80%93print_Joop

[6] DesignScript summary user manuahttp://aucache.auto-
y desk.com/au2012/ses-
i w3 v B g sionsFiles/3286/5471/handout_3286 DesignScript_sum-
mary_user_manual.pdf

Figure 10. Facade geometry created using data flow [  [7] DesignScript tutorial as implemented with the Dynamo Ul
gramming, including the automatic creation of curtain \ [http:/dynamoprimer.com/en/07_Co@éock/7_Code
gridlines based on the planning grid geapeind facade Blocks-andDesignScript.html]

panel analysis colour coded based on fabrication criter  [8] John Hennessey, DavRlia t t eCQomsputar Architecture, a
Images courtesy of Foster + Partners Qualitative Approac®"Edi t i on” , Mo@Rdé4 n Kauf



ftp://ftp.cs.orst.edu/pub/burnett/Computer-scalingUp-1995.pdf
ftp://ftp.cs.orst.edu/pub/burnett/Computer-scalingUp-1995.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://dynamoprimer.com/en/07_Code-Block/7_Code-Blocks-and-Design-Script.html
http://dynamoprimer.com/en/07_Code-Block/7_Code-Blocks-and-Design-Script.html

