Domain-Specific Languages for
Composing Signature Discovery Workflows

Ferosh Jacob'?, Adam Wynne!, Yan Liu', Nathan Baker*, and Jeff Gray?
flacob@crimson.ua.edu, Adam.Wynne, Yan.Liu, Nathan.Baker@pnnl.gov, gray@cs.ua.edu

!Pacific Northwest National Laboratory
Richland, WA

ABSTRACT

Domain-agnostic signature discovery entails study across mul-
tiple scientific disciplines. The breadth and cross-disciplinary
nature of this work requires that existing executable appli-
cations be integrated with new capabilities into workflows,
representing a wide range of user tasks. An algorithm may
be written in multiple programming languages for various
hardware platforms, and so workflow composition requires
integrating executables from any number of remote hosts.
This raises an engineering issue on how to generate web ser-
vice wrappers for these heterogeneous executables and to
compose them into a scientific workflow environment (e.g.,
Taverna). In this position paper, we summarize our work
on two simple Domain-Specific Languages (DSLs) that au-
tomate these processes. Our Service Description Language
(SDL) describes key elements of a signature discovery ser-
vice and automatically generates its implementation code.
The Workflow Description Language (WDL) describes the
pipeline of services and generates deployable artifacts for the
Taverna workflow management system. We demonstrate our
approach with a real-world workflow composed of services
wrapping remote executables.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific ar-
chitectures

General Terms
Design

Keywords
SDL, WDL, workflow, modeling

1. INTRODUCTION

A signature is a unique or distinguishing measurement, pat-
tern, or collection of data that detects, characterizes, or pre-
dicts a target phenomenon (object, action, or behavior) of
interest. Signatures are valuable to a wide range of appli-
cation domains - including medicine, network security, and
explosives detection - for anticipating future events, diag-
nosing current conditions, and analyzing past events. How-
ever, current approaches suffer from a lack of re-use of ex-
isting algorithms, tools, and techniques across application
domains and scientific disciplines. At the Pacific Northwest
National Laboratory (PNNL), we have been developing a
generalized signature development methodology that is ap-
plicable to any signature discovery problem, along with a

2Department of Computer Science
University of Alabama, AL

service-oriented platform that implements the methodology
[1]. We refer to this combination of methodology and plat-
form as the Analytic Framework (AF). In the AF, legacy
code is wrapped and exposed as web services, which are or-
chestrated to create re-usable tasks that can be retrieved
and executed by users. Currently, we are using Taverna
[2] for service orchestration, but our approach is applicable
to any workflow management system. This service-oriented
approach provides for a robust platform, but also causes
challenges for scientists in integrating their algorithms into
the system.

1.1 Accidental complexity of creating service

wrappers
One challenge is the complexity of building robust services
from legacy code. To make existing executable applications
available as services in our platform, we follow best practices
by employing the Legacy Wrapper pattern [3]. This encap-
sulates existing logic, while providing a standard interface so
that services can be orchestrated with each other to create
re-usable workflows. Informally, we refer to these services
as wrappers. Programmers creating wrapper code for an ex-
isting executable typically follow a common set of steps: 1)
identify the input files and output files in the script; 2) re-
trieve the input files from the data management system; 3)
run the executable; and 4) upload the output files to the
data management system. This process for converting an
executable often results in significant extra code and oper-
ations. For example, in our system, manually wrapping a
simple script that has a single input and output file requires
121 lines of Java code (in five Java classes) and 35 lines of
XML code (in two files). Additionally, the engineer needs
to then manually import each web service into the Taverna
workbench so that they can be composed into a workflow.

1.2 Lack of end-user environment support
Many scientists are not familiar with service-oriented soft-
ware technologies. In this case, they will be forced to seek
the help of software developers to make the web services en-
capsulating their executables available in the workflow en-
vironment. This technology barrier may degrade the effi-
ciency of sharing signature discovery algorithms, because
any changes or bug fixes of an algorithm require a dedicated
programmer to navigate through the engineering process.

We applied Domain-Specific Modeling (DSM) techniques to
model the process of wrapping remote executables. The
executables are wrapped inside AF web services using a

service submitBlast {

1

2 use ssh_oly;

3 cmd "sh runJob.sh";

{ resource "jobScript.sh", "runJob.sh";

5 in doc blossum , params, fasta;

6 out jobID, outDir;

- /=

-] *Inside runlJob.sh

2 * echo " jobID=$SLURM_JOBID" >.properties
10 * echo "outDir=80UTDIR" >>.properties
11 */

Figure 1: Service description for BLAST submission

Domain-Specific Language (DSL) [4] called the Service De-
scription Language (SDL). The SDL-created web services
can then be used to compose workflows using another DSL,
called the Workflow Description Language (WDL). In this
position paper, we illustrate our approach with a set of ser-
vices and a workflow that are commonly used in our signa-
ture discovery work.

2. EXAMPLE APPLICATION: BLAST EX-
ECUTION

BLAST is an executable commonly used to find regions of
similarity between biological sequences. Scientists at PNNL
have parallelized BLAST [5] and applied it to other appli-
cation domains, effectively making it part of set of gener-
alized sequence-based signature discovery tools. In the AF,
a BLAST workflow is usually executed in three steps: 1)
submit a BLAST job to the queue management system for
a cluster; 2) check the status of the job; and 3) download
the output files upon completion of the job. We model and
orchestrate the scripts to execute the BLAST workflow us-
ing our approach in two steps, as explained in the following
sub sections.

2.1 Creating service wrappers using SDL

We have used the SDL to create service wrappers for each
step of the workflow. The SDL code to create a job submis-
sion service is shown in Figure 1. A BLAST job is submit-
ted using two script files “jobScript.sh” (a SLURM" file) and
“runJob.sh” (a BASH file). The script file “runJob.sh” exe-
cutes the SLURM file and writes jobID and outDir to the
.properties file. As shown in the figure, the submitBlast
service has two outputs, the execution directory (outDir)
and the job identifier (jobID). Both outputs are declared
as the default type (string type); hence, the generated code
downloads and reads their values from a .properties file.

Other services (blastResult and checkJob) are command
SDL service wrappers (no script files) and are not shown.
The service checkJob checks the status of a given jobID and
returns status “Running,” “Pending,” or “Done.” The service
blastResult downloads the files from a given directory.

2.2 Creating workflows using WDL

A WDL file generates a Taverna workflow based on the
descriptions specified by the user. A WDL workflow in-
volves communication and interactions of various service
wrappers among each other and also with other workflows.

!SLURM, https://computing.11nl.gov/linux/slurm/

luse "SigAnalysis.sdl"
2workflow BlastSearch (

3in blosum, in params, in fasta ,
4 out outFile, out status){

//Linking workfow inputs and submitBlast service
blosum—>submitBlast . blossum

params —> submitBlast.params

g fasta —> submitBlast. fasta

10

11 //Linking sub-workflow with maim (Leop)

12 call checkJob

13 till status="Done"

14 with submitBlast.joblID ,
15

16 //Linking blastResult after checkJob
17 submitBlast.outDir

® o~ &t

status

18 —>blastResult . outDir after checklJob

19

20 //Linking workflow output and blastResult
21 blastResult.outFile—>outFile

22 }

23 /%

24 *Bub-workflow checklJob

25 */

26 workflow checkJob (in wf_joblD , out wf_status){

28 wif_jobID—>jobStatus.joblID
20 jobStatus.status—>wf_status

Figure 2: Workflow description for BLAST

A WDL file can contain many workflows, but the top-most
workflow is considered the “main” workflow with all others
treated as sub-workflows. In Figure 2, two workflows are de-
fined, BlastSearch (main workflow, lines 2-22) and check-
Job (sub-workflow, lines 26-30). The main workflow takes
input required for the BLAST execution as input (line 3)
and, a file (outFile) and status as output (line 4). A service
defined in the WDL file is executed automatically as soon as
all the inputs for that service are set. Three inputs required
for the service are set using the workflow inputs (see Figure
2, lines 7-9), thus the submitBlast service is executed after
line 9. In some cases, this may not be a desired behavior.
As an example, for the BLAST execution, the blastResult
service that downloads the output files needs to wait for the
BLAST job to complete. To allow a service to be executed
only after the specified workflow or service, the “after” key-
word is provided. The “after” keyword can be added to any
service invocation (Figure 2, line 18). As shown in the fig-
ure, (lines 12-14), using the call-till-with structure, the
main workflow can iteratively “call” a sub workflow “till” it
meets a condition SwithT main workflow ports. Hence, the
“call-till-with” structure is a replacement for function calls
and loops in WDL. The executable workflow file opened in
the Taverna workbench is shown in Figure 3.

3. IMPLEMENTATION OVERVIEW

The overall framework of the tool to generate both wrap-
pers and workflows is given in Figure 4. This tool expects
the scripts in a template format with template variables as
defined in service descriptions. The outputs are Web service
wrappers and a workflow file deployable to a workflow en-
gine (such as Taverna). Each Web service wrapper is created
from scripts and the associated SDL files; and the workflow
file is created using both SDL and WDL files. The code
generation occurs in two stages:

1. Web application creation. The tool creates Web ser-

. Workflow input ports

’faata ” params ” blosum]‘

k *

vy

status || outFile v

Figure 3: BLAST execution workflow in Taverna

vices from the SDL files that describe the key elements
of a script;

2. Workflow creation. The SDL file from the first stage
defines a deployable SDI Web services. It is passed to-
gether with the WDL file to create the workflow con-
structs. These constructs are the basic elements for
the Taverna engine to create a workflow as defined in
WDL.

At runtime, the function of the script can be executed in
the remote host through an SSH session with the help of
existing signature discovery libraries. These libraries are re-
sponsible for making the input files available before execu-
tion and uploading the output files to a dedicated document
management system after execution. A template engine is
used to apply runtime values of the services on scripts.

4. CONCLUSION

We successfully designed and implemented two DSLs (SDL
and WDL) for converting remote executables into scientific

~ Template
Script tadat: i
(e ;nza:ee ?npau:sl I WA Sariicns < e
— . (e.g., checklob)
sDL ! J SDI
(e.g., blast.sdl) framework
WDL { Taverna Workflow)
(e.g., blast.wdl) (e.g., Tave.rna
BlastSearch.t2flow)) engine
Inputs Generated
DSL load time "
code runtime

Figure 4: Block diagram showing implementation

workflows. SDL can generate services that are deployable
in a signature discovery workflow using WDL. We separated
the domain-specific information required to create the work-
flows from the accidental complexities introduced by web
services and the Taverna workflow engine, which allows end-
users (scientists) to design and develop workflows. The two
DSLs are introduced using a BLAST execution workflow,
a frequently used workflow in scientific community. This
project is an initial step towards scientists designing and
developing complex workflows in various signature domains
utilizing the best algorithms available on best resources. As
a future work, we plan to evaluate our work by compari-
son with other existing tools through empirical studies with
human subjects. Providing a workflow development envi-
ronment specifically for signature workflows is also included
as our future work.

S. REFERENCES

[1] Signature discovery initiative.
http://signatures.pnnl.gov/.

[2] Taverna workflow management system.
www.taverna.org.uk/.

[3] T. Erl. SOA Design Patterns. Prentice Hall PTR, 1st
edition, 2009.

[4] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344, 2005.

[5] C. Oehmen and J. Nieplocha. ScalaBLAST: A scalable
implementation of blast for high-performance
data-intensive bioinformatics analysis. IEFE
Transactions on Parallel and Distributed Systems,
17(8):740-749, 2006.

