Experiences with Automotive Service Modeling

Akihito Iwai, DENSO CORPORATION Norio Oohashi, NEC Corporation Steven Kelly, MetaCase

DENSO

Background: Service Integrated Systems

- Automotive Software Systems become more large-scale and complex year by year
- ⇒ Evolving to "Service Integrated System" as "Connected Vehicle"

DENSO

© DENSO CORPORATION All rights reserved.

Motivation: Need for a Service Integration Platform

- Big GAP between vehicle world and IT world!
 - Static vs Dynamic, Quality vs Speed,
- Current Approach
 - Component-based approach
- Further Approach
 - Service-oriented approach
 - Service modeling
 - Standardization

© DENSO CORPORATION All rights reserved. This information is the exclusive property of DENSO CORPORATION. Without their consent, it may not be reproduced or given to third parties.

Challenges for Service Integration

• Service Modeling (Today's topic)

- Service model definition and implementation
- Abstract model of vehicle service
- Capturing requirements from multiple stakeholders
- Developed by multiple vendors

Secure Platform

- Protection mechanism against invalid external access
- Highly dependable OS
- Firewall

Pervasive Computing

- Adapting to dynamic change of system configuration
- Installing ad-hoc communication system
- Dynamic configuration

Darwin Service Concept

Situation = Space (Where) & Time (When)

- Situation Matching
 - Car moves through various situations.
 - Service Integration platform executes appropriate services according to the requirements of the situation autonomously.

DENSO

© DENSO CORPORATION All rights reserved.

Case study: Intelligent Parking Service

- Car, service provider and mobile phone work collaboratively to provide parking navigation, remote security and road pricing.
- Car provides appropriate services according to the requirements of the situation autonomously.

DENSO

Automotive service integration on service integration platform with $BPEL_{6/14}$

Easy Integration of services using Service Interface

*BPEL: Standard for describing "business process orchestration" by using XML representation.

DENSO

Experiences with BPEL

Problems with BPEL

- No facilities for describing the *dependability* of a service such as real-time guarantee, safety, reliability, and security
 - This capability is strongly required for automotive modeling
- No model of *resources*
 - Many of the choices we want to make in the models are based on whether resources are available
- No native facilities for *autonomous* choice among multiple possible services
 - Start and end conditions had to be expressed outside of BPEL.
- Poor facilities for *fault tolerance*
 - e.g. modeling the behavior of a system with failures. Higher-level facilities than try-catch would be needed.
- Poor facilities for splitting a model into *multiple parts*, with each part only ultimately being decided at *runtime*
 - The underlying assumption in BPEL is more that the whole model of a service is available in one place at design time.

Attempt to minimally extend BPEL

Example of BPEL description

(1)

<invokeAbstractService when="always" where="area:Osaka" what="Search parking" execute="all" timing="start">

<params>

<param type="int">latitude</param>

<param type="int">longitude</param>

</params>

<return type="string">ParkingServiceName</return> </invokeAbstractService>

(2)

<invoke name="InvokeNotifyEmptySpaceNumber"

partnerLink="ParkingServer" operation="GetEmptySpaceNumber"

portType="GetEmptySpaceNumberPT"

inputVariable="ParkingServiceName"

outputVariable="ParkingNumber">

</invoke>

(3)

<invoke name="InvokeCheckParkingCar" partnerLink="CAR" operation="CheckParkingCar" portType="CheckParkingCarPT" inputVariable="ParkingNumber" outputVariable="bParkCar">

<toParts>

<toPart part="partnerLinkName" toVariable="ParkingServiceName" />

<toPart part="partnerLinkName" toVariable="ParkingNumber" /> </toParts>

</invoke>

Proposed Solutions

- Domain Specific Approach will be needed
- Two possible approaches
 - Extend BPEL fundamentally (chosen as first step)
 - New DSM Language from scratch
- Proposed BPEL extension
 - Resource Contract Function (RCF)
 - Resource Model for choosing appropriate BPEL description along with platform resource capability
 - (See details on later slide)
 - Fault Tolerant Network
 - Monitoring running service, failures, degradation of service for reliability
 - No example created yet
 - (Skip in this presentation)

- Motivations
 - A service process reserves resources needed to execute, so that loading of servers and network should affect its execution.
 - If platforms could not keep resources assigned to a process, the process could switch an alternative service description.
- Example
 - When a platform cannot keep a bandwidth for a service process which uses video, the platform warns the process to degrade its quality of service: to use only voice guides, when it cannot keep the bandwidth, to use text data for text-to-speech.

Resource Contract Function (RCF) mechanism

DENSO

C DENSO CORPORATION All rights reserved. This information is the exclusive property of DENSO CORPORATION. Without their consent, it may not be reproduced or given to third parties.

Example of Resource Contract Function

DENSO

© DENSO CORPORATION All rights reserved.

Summary and Future Work

- Growing importance of approaches like SOA in automotive
 - to integrate work by multiple partners
- "One size fits all" often doesn't fit so well
 - for our needs, BPEL could not be applied unaltered
 - main problems: low level, necessary things missing
- Altering or extending a standard stops it being a standard
 - loses its main value
 - in our case, extensions didn't help enough anyway
- Creating a new language is a viable alternative
 - good tools allow experimentation and evolution
- Future Work
 - Virtual models of service elements in the real world
 - Models of implicit synchronization of service processes
 - Situation description models

Thank you for your attention!

Prototype DENSO Electronic Vehicle, which commemorates the 60th anniversary of DENSO COPORPORATION

DENSO

C DENSO CORPORATION All rights reserved. This information is the exclusive property of DENSO CORPORATION. Without their consent, it may not be reproduced or given to third parties.