
Undoing Operational Steps of
Domain-Specific Modeling Languages

Tim Hartmann Daniel A. Sadilek
Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

{hartmann|sadilek}@informatik.hu-berlin.de

Abstract
In this paper, we deal with the animated execution of domain-
specific models (DSMs) that are expressed in domain-specific mod-
eling languages (DSMLs) whose semantics are described in an op-
erational fashion. We propose to support stepping back in the exe-
cution history of such DSMs. We argue that this eases debugging of
the DSM itself and the DSML’s operational semantics. As an exam-
ple, we show animated model execution of Petri nets and identify
the requirement to step back in their execution history. To accom-
plish this, we present an approach in which we apply principles for
undoing user input in model editors to the animated execution of
DSMs. Finally, we present an Eclipse-based implementation of our
approach, which is an extension of the tool EPROVIDE.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Design, Languages

Keywords Domain-specific modeling languages, operational se-
mantics, debugging, stepping back, Eclipse

1. Introduction
1.1 Domain-Specific Modeling Languages
In contrast to general-purpose languages like the Unified Modeling
Language (UML), domain-specific modeling languages (DSMLs)
are customized to a particular application domain. With DSMLs,
domain experts can create models using a vocabulary they are used
to. These models can be directly used in a software engineering
process. For example, they can be interpreted or code can be gen-
erated from them.

When developing DSMLs, the requirements are not always
clear from the start, and more than one development iteration is
necessary. In such cases, prototyping of DSMLs is needed. In this
paper, we deal with executable DSMLs. A prototyping process for
such DSMLs requires that domain experts can create and execute
example models expressed in the DSML.

1.2 Domain-Specific Model Execution using Operational
Semantics

When a domain-specific model (DSM) is to be executed, the DSML
it is expressed in must be given execution semantics. This can be
done with a translational or an interpretational approach.

Using the translational approach, model execution is prepared
by translating a model into an executable form (e.g., by code
generation). But this shifts down the level of abstraction (e.g., into

the realm of programming languages). It is, therefore, inappropriate
for prototyping, especially when domain experts should contribute
to the prototyping of the DSML.

Using the interpretational approach, models are executed by an
interpreter. This interpreter can be hand-crafted or it can be based
on an executable description of the DSML’s operational semantics.
The operational semantics of a language describes the meaning
of a language instance as a sequence of execution steps (Plotkin
1981). Generally, a transition system 〈Γ,→〉 forms the mathemati-
cal foundation, where Γ is a set of configurations and→⊆ Γ × Γ
is a transition relation.

Model-Driven Approach to Operational Semantics. Wachsmuth
(2008) applies the idea of structural operational semantics to
model-driven language engineering. The configurations in Γ are
represented as models, which are called configuration models.
Hence, the space of all possible configurations is defined with a
metamodel, which is called configuration metamodel; and the tran-
sition relation→ is defined with a model-to-model transformation,
which is called transition transformation. As the transition trans-
formation is an executable specification of the transition relation,
this kind of description can be directly used to interpret DSMs.

By describing operational semantics in terms of the language
structure, the domain level of abstraction is kept so that domain ex-
perts can understand them. Thus, they can assess the operational se-
mantics of a DSML by observing the execution of example DSMs.
This allows to integrate them tightly into the prototyping process
of DSMLs.

1.3 Debugging Executable Models
During execution, domain experts might observe erroneous behav-
ior of models. The cause can lie inside the example DSM or in the
prototypical semantics description of the DSML. To identify and
correct such errors, domain experts and language engineers need
debugging support.

Debugging means to control the execution process and to access
and possibly modify the runtime state. Common features of debug-
gers are stepwise execution of programs and setting of breakpoints
or, more generally, suspending and resuming the execution at des-
ignated execution states. Once the execution is halted, variable val-
ues can be inspected and modified. This type of debugging support
for DSMLs can easily be achieved when using model-based opera-
tional semantics (Sadilek and Wachsmuth 2008b).

1.4 Undoing Model Execution
Based on these foundations for model execution and debugging, in
this paper, we want to go further in providing debugging support.

+ running: int

Net

+ name: String
+ activated: bool

Transition
+ name: String
+ runtimeToken: int
+ initToken: int

Place
transitions0..* places0..*

snk src
0..* 0..*

src snk
0..* 0..*

context Transition::activated: bool
derive: src->forAll(runtimeToken > 0)

Figure 1. A Petri net metamodel with attributes for storing runtime
states.

During DSML prototyping, we encountered the following problem.
Assume, for example, a complex model and a configuration that can
be reached only by a long series of execution steps that require user
input (e.g., in the form of input data or by controlling the behavior
of non-deterministic language concepts). Now assume that a do-
main expert finds an error in this configuration. The execution can
be halted and the operational semantics can be changed by a lan-
guage engineer. Afterwards, the execution has to be restarted and
the whole series of execution steps, including every user input, has
to be repeated.

To save this work, we propose to allow users to undo execution
steps performed by the transition transformation. Thus, the config-
uration before the error occurred can be restored, and the execution
can be resumed. The user can instantly review the effects of the
changed operational semantics.

1.5 Structure of the Paper
The rest of this paper is structured as follows. In the following
section, we give an example for animated model execution and
identify the requirement to undo operational steps of DSMLs. In
Sec. 3, we present our approach for undoing operational semantics,
and in Sec. 4, we give a brief overview of our implementation. We
discuss existing work about DSM execution in Sec. 5 and conclude
with our contribution and future work in Sec. 6.

2. Animated Execution and Debugging of Petri
Nets

In this section, we give an example of animated model execution
and identify the requirement to undo operational steps of DSMLs.
We use Petri nets as an example DSML and specify its operational
semantics in Java. As execution engine, we use the tool EPROVIDE,
which our implementation will eventually be based on.

2.1 Animated Execution and Debugging with EProvide
In (Sadilek and Wachsmuth 2008b), operational semantics are com-
bined with existing editor generation technology in order to support
rapid prototyping of visual interpreters and debuggers. The runtime
state of a DSM, its configuration, is represented as a model (as we
described in Sec. 1.2). A graphical editor that is specific to the con-
figuration metamodel is used to display and modify configurations.
By visualizing successive configurations, the editor animates model
execution. This approach is implemented in the Eclipse-based tool
EPROVIDE, which allows the use of different description languages
(Java, QVT Relations, Scheme, Prolog, and Abstract State Ma-
chines) to describe operational semantics of metamodel-based lan-
guages (Sadilek and Wachsmuth 2008a).

2.2 Describing the Operational Semantics of Petri Nets
As an example, we describe operational semantics of Petri nets.
Figure 1 shows a metamodel for Petri nets and their runtime con-

public class PetriSemantics implements ISemanticsProvider {
public void step(Resource model) {

Net net = (Net) model.getContents().get(0);
net.setRunning(true);
fireTransition(net);

}

protected void fireTransition(Net net) {
EList<Transition> ats = findActivatedTransitions(net);
if (!ats.isEmpty()) {

Transition t = choose(ats);

Place p = choose(t.getSrc());
consume(p);

p = choose(t.getSnk());
produce(p);

}
}

protected T choose(List<T> list) {
// Returns a randomly chosen member of list.

}
// ...
}

Figure 2. Operational semantics for Petri nets described with Java.

figurations.1 A Petri net consists of an arbitrary number of places
and transitions. Places and transitions can have names and places
are marked with a number of tokens. We distinguish the initial
marking (initToken) and the runtime marking (runtimeToken)
of places. The initial marking of a place is a “static” attribute that
does not change when the model gets executed. The runtime mark-
ing is a “dynamic” attribute that encodes the runtime configuration
and that changes during model execution.2 When a model is re-
set to its initial state, the runtime marking of each place is set to
its initial marking. Whether initToken or runtimeToken is dis-
played by the editor depends on the value of the Net’s (running)
attribute. Transitions have input (src) and output places (snk). De-
pending on its input places, a transition might be activated or not
(activated).

Figure 2 shows a class implementing (erroneous) operational
semantics for Petri nets in Java. The method step() implements
the transition transformation. It is called repeatedly by EPROVIDE

to perform operational steps. The API used in step() is generated
by the Eclipse Modeling Framework (EMF), which we use in our
implementation (Sec. 4).

2.3 Animated Execution of a Petri Net
Figure 3 shows what animated execution with EPROVIDE looks like.
We use the standard notation for Petri nets: places are represented
by circles, transitions by squares; the number of tokens on a place
is shown inside the circle. Figure 3(a) shows the initial state of an
example model. In Fig. 3(b), the first transition has fired and the
token is now on the middle place. Fig. 3(c) shows the state after the
second transition fired.

The final state in Fig. 3(c) contains an error that is easily iden-
tified by a domain expert. A token was produced at only one of the
two output places, but a token should have been produced on all
output places. Such errors can be caused by misunderstandings be-

1 In general, one could use a separate metamodel for the runtime configura-
tions. But to keep this example simple, we use an integrated metamodel.
2 In more complex cases, it is often not sufficient to add attributes to
existing metamodel classes; instead, additional classes are necessary to
model runtime configurations. This is the case, for example, for reentrant
functions, which require that values of local variables are stored for each
function call.

(a) initial state

(b) state after step 1

(c) state after step 2

Figure 3. Execution sequence of a Petri net model using erroneous
operational semantics.

// ...
protected void fireTransition(Net net) {

EList<Transition> ats = findActivatedTransitions(net);
if (!ats.isEmpty()) {

Transition t = choose(ats);

for (Place p : t.getSrc())
consume(p);

for (Place p : t.getSnk())
produce(p);

}
}
// ...

Figure 4. Corrected operational semantics for Petri nets.

tween domain experts and language engineers. Here, the language
engineer has assumed that exactly one token is transfered each time
a transition fires. After finding the error by animated execution, the
domain expert can explain to the language engineer that the cor-
rect behavior for a transition would be to consume one token from
all its input places and produce one on all its output places. Now,
the language engineer can correct the operational semantics. The
corrected code is shown in Fig. 4.

2.4 Requirement to Undo Operational Steps
Now, the capability to undo model execution steps would come in
handy. Via undo, the state before the last (incorrect) step could be
reached, shown in Fig. 5(a), which is identical to the state shown in
Fig. 3(b). From this point, the execution could be resumed, using

(a) state after undoing step 2

(b) state after resuming with corrected semantics

Figure 5. Execution sequence of the Petri net model after correct-
ing the operational semantics.

the corrected operational semantics, which would lead to the state
shown in Fig. 5(b).

To control such an undo feature and animated model execution
in general, the user needs a graphical user interface. IDEs already
provide debugging support for standard programming languages,
including a debug user interface for stepwise execution. The undo
feature for DSMs should integrate seamlessly into such an existing
infrastructure.

3. An Approach for Undoing Operational Steps
We want to allow undoing of DSM execution steps. In each of the
steps, the configuration is changed. To undo an execution step, the
corresponding model changes have to be undone. A similar prob-
lem is already solved for model editors. Here, the model changes
are not performed by an operational semantics but by a user. To
make model changes undoable, they get encapsulated in undoable
units of work that are managed on an undo stack. Our approach
is to use similar techniques with the goal to reuse as much of an
existing model editor implementation as possible.

3.1 Logging Model Changes
To be able to undo an execution step, it is necessary to know
all changes that were performed by the transition transformation.
Therefore, the execution engine needs to be notified of all model
changes, and the changes have to be stored to create an undoable
execution history. This notification problem does not occur with a
model editor because the editor is implemented to encapsulate all
model changes in undoable units of work. In contrast, with model-
based operational semantics (Sec. 1.2), the semantics description
does not contain such an encapsulation.

How notification of changes can be achieved is implementation
dependent. Two possible ways are: (1) the operational semantics
is not applied to the model directly but to a proxy that logs all
model changes; (2) the observer pattern is used to receive and log
notifications of model changes.

3.2 Integrating Model Execution and Editing
Another issue, which is related to the visualization approach intro-
duced in Sec. 2.1, is the synchronization of editor and execution

engine. The execution engine works on an instance of the configu-
ration metamodel, transforming this instance with every execution
step. The editor needs to work with the same configuration to visu-
alize the current runtime state. Editor and execution engine access
the configuration concurrently. This can cause inconsistent states.
For example, the user could modify a value that the engine just
read and still relies on during an execution step. To avoid such in-
terferences, it is necessary to synchronize write access of editor and
engine.

3.3 Composing Execution Steps
There is an important difference between changes made in an
editor and those made by the execution engine. Generally, the
user manipulates one model element at a time with an editor. But
a single execution step will, in most cases, include a series of
elementary changes of a configuration. Even in the simple Petri
net example (Sec. 2), one step, i.e. firing a transition, comprises
consuming one token from all input places and producing a token
on all output places. All those changes have to be stored together
and they must be associated with the execution step they belong
to. Furthermore, either the complete step has to be performed or
none of the elementary changes. Regarding the synchronization
problem from the previous section, this means that the mutual
exclusion of editor and execution engine has to span the whole
execution step, not just elementary changes. Those requirements,
namely atomicity and isolation, are met by transactions. Therefore,
all changes belonging to one step must be wrapped into a single
unit of work that is executed inside the scope of a transaction.

3.4 Managing Execution Steps
As we want to be able to undo more than one execution step, we
have to manage the execution history on a stack. This is straightfor-
ward when taken for granted that one step is a single unit of work.

However, a consistency problem arises because the user can
modify configurations with the editor. Assume a set M of possi-
ble configurations, a set C of possible model changes, and a tran-
sition transformation ;: M → M × C. Let m1 ∈ M be an
arbitrary configuration. Applying ; to m1 results in a new con-
figuration m2 ∈ M with the change c: m1

c
; m2. We can undo

c and get back from m2 to m1 by reversing the transformation:
m2

c
;
−1

m1. If, however, the user changed m2 to m3 using the
model editor, we cannot safely undo c in the current state m3 any-
more. That is because the user made the change m2

d
; m3 and

generally, c 6= d. Therefore, undoing c in state m3 could lead to an
inconsistent state, which may even violate constraints of the meta-
model.

To solve this problem, all model changes, regardless of their
origin, have to be kept and undone in the order in which they were
applied. This can be achieved by using the same stack for both
editor and execution engine.

4. Implementation
This section sketches the implementation of our approach, which is
based on the tool EPROVIDE3, introduced in Sec. 2.1.

4.1 Implementation Basis
Important for our implementation are especially the Eclipse Model-
ing Framework (EMF), the Graphical Modeling Framework (GMF)
and Eclipse’s debug infrastructure. EMF uses Ecore as meta-
metamodel, which is virtually an implementation of OMG’s Essen-
tial MOF. EMF can generate a Java API for an Ecore metamodel.

3 EPROVIDE is open source software and available for download at
http://eprovide.sf.net

This API can be used to access metamodel instances program-
matically. The Java-based semantics for Petri nets from Sec. 2.2
uses such an API. EMF uses Resources, which are an abstraction
from physical files, to handle metamodel instances. Resources can
reference, or be related to, other resources. They are managed in
ResourceSets, which in turn are managed by EditingDomains.
GMF allows graphical editors to be generated for EMF-based mod-
els from declarative descriptions. In EPROVIDE, such editors are
used to visualize configurations (Sec. 2.1). Eclipse’s debug infras-
tructure provides a language independent debug model and a user
interface for common debug functionality.

4.2 Logging Model Changes
In Sec. 3.1, we presented two ways to get notified of changes
applied to configurations. The second of them, the observer pat-
tern, is already implemented in EMF: observed model elements
are called notifiers and there is already a recording observer called
ChangeRecorder. Consequently, we chose the observer pattern to
get notified of configuration changes. EMF also provides a data
structure to store changes, additions, and deletions of model el-
ements: the ChangeDescription. All changes belonging to one
execution step can be stored in one ChangeDescription by using
a ChangeRecorder. The changes in a ChangeDescription can
be undone by applying them in reverse to a configuration. Thus,
execution steps can be undone.

4.3 Integrating Model Execution and Editing
Following our approach for undoing operational semantics, the
EPROVIDE execution engine and the GMF generated editor have
to share access to configurations (as was explained in Sec. 3.2).
Configurations are EMF models, which are handled in the form of
EMF Resources. EMF Resources can be shared, e.g., between
different editors (Wegert and Shatalin 2008). This is achieved by
using a shared EditingDomain. Following this principle, we use
the same EditingDomain for editor and execution engine. This
grants some additional benefits as we will see in Sec. 4.5.

To solve the problem of synchronizing editor and execution
engine, we use EMF’s transaction framework EMFT. EMFT is
an extension of EMF that provides transactional access to EMF
resources. GMF generated editors and EPROVIDE both use EMFT.
Thus, synchronization is achieved.

4.4 Composing Execution Steps
As stated in Sec. 3.3, the elementary changes performed during an
execution step have to be wrapped into a single unit of work. For
this, we use EMFT’s RecordingCommand, which internally uses a
ChangeRecorder. For each execution step, a RecordingCommand
is used that creates a transaction context for the configuration
changes in that step. The RecordingCommand’s ChangeRecorder
tracks all configuration changes of the step and stores them in a
ChangeDescription so that the RecordingCommand can be un-
done. Thus, all model changes of one execution step can be undone
as a whole.

4.5 Managing Execution Steps
The shared EditingDomain, introduced in Sec. 4.3, also yields
a shared CommandStack. The RecordingCommands from the ex-
ecution engine and the commands from the editor are now exe-
cuted and managed via this CommandStack. By this means, all
commands are stored in the sequential order that was required in
Sec. 3.4.

4.6 Integrating the User Interface
Eclipse’s debug infrastructure can be extended with new debug
functionality. We added support for stepwise DSM execution and

Figure 6. Model debugging with EPROVIDE. The debug toolbar is extended with a button for stepping back in the execution history.

for stepping back in the resulting execution history. The Eclipse
debug user interface already provides buttons to suspend, resume,
terminate, and stepwise execute a program. We reuse them for
model execution. For stepping back in the execution history, we
added a “step back” button. Fig. 6 shows a screenshot of EPROVIDE

with the extended debug interface.

5. Related Work
Runtime States as Models. Several approaches are based on
metamodeling runtime states. All of them provide their own de-
scription languages, sometimes a variation or extension of existing
modeling languages (Scheidgen and Fischer 2007), OCL (Muller
et al. 2005; Clark et al. 2004) or Abstract State Machines (ASMs)
(Di Ruscio et al. 2006). None of these approaches has support for
stepping back in the execution history. Adding this feature would
require solving the following problem: With EPROVIDE, the execu-
tion of the transition transformation is stateless and the complete
runtime state is encoded in a model. The approaches above, in con-
trast, use description languages whose execution is stateful, i.e.,
between execution steps, a state is held inside the interpreter of the
description language. For example, with the OCL-based, impera-
tive description language of Muller et al. (2005), the interpreter
state is a call stack with the local variables of procedure calls.
Therefore, undoing an execution step in these approaches would
require not only to undo the changes of the configuration but also
to undo the changes of the description language’s interpreter state.

Runtime States as Attributed Graphs. Graph transformations are
a well-known technology to describe the operational semantics of
visual languages (Engels et al. 2000; Ermel et al. 2005). In AToM3,
de Lara and Vangheluwe (2004) use graph grammars to define the
operational semantics of a visual modeling language. The Moses
tool suite (Robert Esser 2001) provides a generic architecture to
animate visual models, with execution semantics of models given
as ASMs. As they are, these tools do not support stepping back

in the execution history. But our approach to reuse model editing
techniques could be applied to them, as well.

Hand-Crafted Interpreters. Interpreters for DSMLs can also be
implemented manually. Ptolemy (Brooks et al. 2007) allows ani-
mated execution of hierarchically composed domain-specific mod-
els with different execution semantics. Adding a new DSML to
Ptolemy requires that its syntax and its semantics are coded man-
ually in Java. GME (Lédeczi et al. 2001) provides visualization of
model interpretation and support for creating a DSML editor with-
out manual coding. But as with Ptolemy, the interpreter semantics
has to be implemented manually in Java or C++. The runtime states
in these frameworks are encoded in data structures of the language
used to implement the interpreter (Java, C++). In contrast to EMF,
there is no editing framework with support for undoable commands
already available. Therefore, if stepping back in the execution his-
tory is to be supported for manually implemented DSML inter-
preters, using a proxy-based approach like that sketched in Sec. 3.1
seems reasonable.

Animated Model Execution with Translational Semantics. An-
imated model execution can be achieved not only with an opera-
tional but also with a translational semantics description. For this,
the DSM editor must provide an API with callback functions that
are called by the generated code to reflect the current runtime state
in the editor. This approach is supported, for example, by the tool
MetaEdit+ (Tolvanen et al. 2007). Using this approach, an undo
feature for execution steps cannot be provided generically. Whether
and how execution steps can be undone is specific to the platform
the generated code runs on.

6. Conclusion
Contribution. In this paper, we showed how prototyping of
DSMLs with operational semantics can be improved by support
for stepping back in the execution history of DSMs. We presented

an approach for this support that is based on reusing model man-
agement techniques normally used in model editors. We proved the
feasibility of our approach with an implementation based on the
tool EPROVIDE.

Future Work. Execution control, such as support for breakpoints
between DSL execution steps, can be achieved by extending the
configuration metamodel with elements for controlling the execu-
tion process and by adapting the transition transformation to use
these elements (Sadilek and Wachsmuth 2008b). For Petri Nets,
this would mean to suspend the execution if a certain number of to-
kens on a specific place is reached or if a selected transition gets ac-
tivated or deactivated. But at the moment, a user interface for man-
aging breakpoints has to be programmed manually for each DSML.
We want to investigate whether breakpoint support for DSMLs can
be described declaratively.

Another common debug feature is source lookup. For model
debugging, this means accessing and showing those parts of the
operational semantics that are related to selected model elements.
EPROVIDE is extensible to allow operational semantics descriptions
in different languages. We want to investigate if and how generic
source lookup for different semantics description languages can be
provided.

Some debugging platforms include possibilities to change the
structure of a debugged program at runtime. This is done, to some
degree, with Java hot-code-replacement. In EPROVIDE, an editor is
used for configuration visualization that allows a user to make ar-
bitrary changes of configurations. To prevent a user from produc-
ing invalid configurations, the possible changes would have to be
constrained. We want to investigate how such constraints can be
described and implemented.

When a user finds an error in the operational semantics during
execution, he can correct it and undo the step(s) in which he noticed
the error (as described in Sec. 2). But maybe the error already
occurred earlier and the user just did not notice. In this case,
the current runtime state would have never been reached with the
corrected operational semantics. EPROVIDE does not deal with this
issue. To do so, it would be necessary to trace which parts of the
operational semantics description are applied at which execution
steps. This would enable EPROVIDE to automatically step back to
the last state in the execution history that is consistent with the
changed semantics. In principle, such a feature is possible (e.g., it
was implemented for the visual, functional language Prograph (Cox
and Pietrzykowski 1985)) but its feasibility strongly depends on the
used description language.

Acknowledgments
We thank the anonymous reviewers for their valuable comments.
This work is partially supported by grants from the Deutsche
Forschungsgemeinschaft, Graduiertenkolleg METRIK (GRK 1324).

References
Christopher Brooks, Edward A. Lee, Xiaojun Liu, Steve Neuendorffer,

Yang Zhao, and Haiyang Zheng. Ptolemy II: Heterogeneous Concurrent
Modeling and Design in Java. UC Berkeley, 2007.

T. Clark, A. Evans, P. Sammut, and J. Willans. Applied metamodelling: A
foundation for language driven development. www.xactium.com, 2004.

P. T. Cox and T. Pietrzykowski. Advanced programming aids in prograph.
In SIGSMALL ’85: Proceedings of the 1985 ACM SIGSMALL sympo-
sium on Small systems, pages 27–33, New York, NY, USA, 1985. ACM.

Juan de Lara and Hans Vangheluwe. Defining visual notations and their ma-
nipulation through meta-modelling and graph transformation. Journal of
Visual Languages & Computing, 15(3-4):309–330, 2004.

Davide Di Ruscio, Frederic Jouault, Ivan Kurtev, Jean Bezivin, and Alfonso
Pierantonio. Extending amma for supporting dynamic semantics spec-

ifications of dsls. Technical Report HAL - CCSd - CNRS, Laboratoire
D’Informatique de Nantes-Atlantique, 2006.

G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta-
modeling: A graphical approach to the operational semantics of behav-
ioral diagrams in uml. In UML’00, volume 1939 of LNCS, pages 323–
337. Springer, 2000.

Claudia Ermel, Karsten Hölscher, Sabine Kuske, and Paul Ziemann. An-
imated simulation of integrated uml behavioral models based on graph
transformation. In VL/HCC’05, pages 125–133. IEEE Computer Soci-
ety, 2005.

Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nord-
strom, Jonathan Sprinkle, and Gábor Karsai. Composing Domain-
Specific Design Environments. Computer, 34(11):44–51, 2001. ISSN
0018-9162.

P.A. Muller, F. Fleurey, and J.M. Jézéquel. Weaving executability into
object-oriented meta-languages. In MoDELS’05, volume 3713 of LNCS,
pages 264–278. Springer, 2005.

Gordon D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

Jorn Janneck Robert Esser. Moses: A tool suite for visual modeling of
discrete-event systems. In HCC’01, pages 272–279. IEEE Computer
Society, 2001.

Daniel A. Sadilek and Guido Wachsmuth. Eprovide 2.0: Where gram-
marware meets modelware. Technical report, Humboldt-Universität zu
Berlin, 2008a.

Daniel A. Sadilek and Guido Wachsmuth. Prototyping visual interpreters
and debuggers for domain-specific modelling languages. In Ina Schiefer-
decker and Alan Hartman, editors, ECMDA-FA 2008, volume 5095 of
LNCS, pages 63–78, Berlin, Germany, 2008b. Springer.

Markus Scheidgen and Joachim Fischer. Human comprehensible and
machine processable specifications of operational semantics. In
ECMDA’07, volume 4530 of LNCS, pages 157–171. Springer, 2007.

Juha-Pekka Tolvanen, Risto Pohjonen, and Steven Kelly. Advanced tool-
ing for domain-specific modeling: MetaEdit+. In J. Sprinkle, J. Gray,
M. Rossi, and J.-P. Tolvanen, editors, Proceedings of the 7th OOP-
SLA Workshop on Domain-Specific Modeling (DSM’07), number TR-
38 in Computer Science and Information System Reports. University of
Jyväskylä, 2007.

Guido Wachsmuth. Modelling the operational semantics of domain-specific
modelling languages. In GTTSE 2007, LNCS. Springer, 2008. to appear.

Volker Wegert and Alex Shatalin. Integrating EMF and GMF Generated
Editors, March 2008. URL http://www.eclipse.org/articles/
article.php?file=Article-Integrating-EMF-GMF-Editors/
index.html.

