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Abstract  
Graph rewriting-based model transformation is an essential tool to 
process graph-based visual models. If the execution of transfor-
mations is not supported by the continuous presentation of the 
modifications performed on the model, the traceability and the 
debugging of transformations becomes difficult. Recent modeling 
tools usually support the definition of rewriting rules based trans-
formations in a visual or textual way, and only a few of them sup-
port visual debugging facilities. These debuggers are hand-coded 
at a price of a huge amount of work. This paper presents a model 
transformation debugger built on the top of the animation frame-
work and the transformation engine of the Visual Modeling and 
Transformation System. The integration of the transformation 
engine and the animation of the user interface are described with 
visual modeling techniques. 

Categories and Subject Descriptors I.6.2., I.6.3. [Simulation 
and Modeling]: Simulation Languages, Applications 

General Terms  Design, Languages 

Keywords Model transformation, Animation, VMTS 

1. Introduction 
Domain-specific modeling is a powerful technique to describe 
complex systems in a precise but still understandable way. The 
strength of domain-specific modeling lies in the application of 
domain-specific languages to describe a system. Domain-specific 
languages are specialized to a concrete application domain; there-
fore, they are particularly efficient in their problem area compared 
to general purpose languages. 

Models created with such languages usually need further au-
tomated processing methods to utilize the information expressed 
by the models in real, end-user applications. The processing may 
be similar to the source code compilers which convert human-
readable source code to byte-code or machine code executed by 
the hardware or a virtual machine, but various model-to-model 
transformations are also frequent.  

When developing a model processor for a language, it is im-
portant to be able to efficiently trace and debug the operations 
performed by the processor. It is not negligible how much effort is 
required to develop a visual debugger either. The motivation of 
our work is to provide a model transformation debugger solution 
built with the help of visual modeling techniques. 

Visual Modeling and Transformation System (VMTS) [1] is a 
general purpose metamodeling environment supporting an arbi-
trary number of metamodel levels. Models in VMTS are 
represented as directed, attributed graphs the edges of which are 
also attributed. The visualization of models is supported by the 

VMTS Presentation Framework (VPF) [2]. VPF is a highly cus-
tomizable presentation layer built on domain-specific plugins 
which can be defined in a declarative manner. 

VMTS Animation Framework 

The VMTS Animation Framework (VAF) [3] is a flexible frame-
work supporting the real-time animation of models both in their 
visualized and modeled properties. The architecture of VAF is 
illustrated in Figure 1. 

VAF separates the animation of the visualization from the dy-
namic behavior (simulation) of the model. For instance, the dy-
namic behavior of a graphically simulated statechart is really 
different from that of a simulated continuous control system mod-
el. In our approach, the domain knowledge can be considered a 
black-box whose integration is supported with visual modeling 
techniques. Using this approach, we can integrate various simula-
tion frameworks or self-written components with event-driven 
communication. The animation framework provides three visual 
languages to describe the dynamic behavior of a metamodeled 
model, and their processing via an event-driven concept. The key 
elements in our approach are the events. Events are parametrizable 
messages that connect the components in our environment. The 
services of the Presentation Framework, the domain-specific ex-
tensions, possible external simulation engines (ENVIRONMENT 
block in Figure 1) are wrapped with event handlers, which pro-
vide an event-based interface. Communication with event han-
dlers can be established using events. The definition of event 
handlers is supported with a visual language. The visual language 
defines the event handler, its parameters, the possible events, and 
the parameters of them - called entities (Event handler model in 
the figure). The default implementation of an event handler is 
generated based on the model, but the event handler methods 
which interact with the wrapped object have to be written manual-
ly (Implementation block). 

The animation logic can be described using an event-driven 
state machine, called Animator (Animator state machine block). 
We have designed another visual language to define these state 
machines. The state machine consumes and produces events. The 
transitions of the state machine are guarded by conditions (Guard 
property) testing the input events and fire other events after per-
forming the transition (Action property). States also define an 
Action property, which describes an operation that is executed 
when the state becomes active. The input (output) events of the 
state machine are created in (sent to) another state machine or an 
event handler. The events produced by the event handlers and the 
state machines are scheduled and processed by a DEVS [4] based 
simulator engine (Animation Engine).  



The event handlers and the state machines can be connected in 
a high-level model (High level animation model). The communi-
cation between components is established through ports. Ports can 
be considered labeled buffers, which have a configurable but pre-
defined size.  

On executing an animation, both the high-level model and the 
low-level state machines are converted into source code, which is 
executed after an automated compilation phase. 

Graph rewriting 

Recall that in VMTS, models are represented as directed, attri-
buted graphs. Model elements are represented by nodes and the 
connections between the elements are defined by the edges of the 
graph. This representation facilitates the applications of various 
graph transformation algorithms. Graph rewriting [5] is a power-
ful technique for applying graph transformations. Graph transfor-
mation consists of rewriting rules. Each rewriting rule has two 
parts: a Left Hand Side (LHS) and a Right Hand Side (RHS). The 
LHS defines a model pattern which has to be found in the input 
model, while the RHS describes a substitute pattern the match of 
the LHS has to be replaced with. Editing graph rewriting rules is 
supported via the Rule Editor plugin of VMTS. The execution 
order of rewriting rules can be defined with the help of the Visual 
Control Flow Language [6]. A Visual Control Flow model may 
contain six types of elements: Start node, End node, Rule node, 
Decision node, Flow edge and External causality edge. The Flow 
edge indicates the direction of the control flow. The Start node 
defines the entry point of the transformation, it also specifies the 
output model (if different from the input model). The End node 
indicates the end of the transformation. The Rule node means the 
application of a rewriting rule, which is defined in another model, 
and the Rule node only references that model. The Decision node 
is used to branch in the flow based on a predefined Object Con-
straint Language (OCL) [7] condition. The external causality edge 
can declare that an element on the LHS of a rule matches another 
element on the RHS of another rule. The operation described by a 
rewriting rule is called internal causality in our terminology. 
There are three types of internal causalities: (i) create, which is 
used to create new elements in the output model; (ii) modify, 
which is appropriate for changing the attributes of the matched 
elements and (iii) delete, which deletes a specified subset of nodes 

matched on the LHS. The create and modify causalities are de-
fined using the Imperative OCL [8] language.  

The application of a rewriting rule usually consists of two 
main steps: (i) searching a subgraph (match) in the input model 
that matches the LHS pattern of the rule, (ii) execution of the 
rewriting rules. If the Exhaustive attribute of the rewriting rule is 
set to true, then the same rule is applied until no match can be 
found. Otherwise, the next rule along the control flow is applied. 

2. A DSL Processor Debugger 
The aim of building a debugger for visualizing model transforma-
tions is to be able to trace the transformation process, and to have 
the possibility to intervene at runtime. Thus, we had the following 
objectives before beginning to design the debugger: (i) the input 
and output models should be visualized and should always reflect 
the current state of the models; (ii) the control flow model should 
be animated to be able to exactly trace the execution of the trans-
formation; (iii) the actually executed rewriting rule should also be 
shown and in case of a successful match, the match should be 
visualized; (iv) the transformation should run step-by-step and 
continuously, the continuous running should be able to be inter-
rupted by breakpoints, and the user should be allowed to perform 
jumps in the control flow, (v) it would also be welcome, if the 
models (at least the host and the target) could be edited at runtime. 

Event handler model 

The model of an event handler defines the events it can handle, 
the parameters of the events, and the interface of the event hand-
ler. The interface of a component is described by a set of ports: 
both event handlers and state machines provide their services 
through ports which can be connected to each other.  

Before implementing the animation logic with event-driven 
state machines, we had to wrap our graph transformation engine 
(the “ENVIRONMENT” in this case) with an event handler, to 
provide an event-driven uniform interface for the animators. 
However, after performing the wrapping, we can use this event 
handler not only for the debugging solution, but also for various 
other simulations requiring graph rewriting-based model trans-
formation. 
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Figure 1. Architecture of the VMTS Animation Framework 



Figure 2 illustrates the event handler model of the model trans-
formation engine. The event handler (EH_GT) defines one port 
(PortGT) to send and receive events. On the left hand side the 
events received by the event handler can be seen, on the right 
hand side the events sent by the event handler are presented. In 
the middle, the entities (the parameters used by the events) are 
enumerated. The events sent by the event handler usually begin 
with “Pre” or “Post”. The pre-events are fired before performing 
a specific operation, whereas the post-events are fired afterwards. 
After sending a pre-event, the event handler usually waits for 
another event to instruct the transformation engine to perform a 
step. Thus, we have the possibility to skip an operation or to mod-
ify its parameters. We have defined a pre-post event pair for each 
type of element in the transformation control flow: 
Pre/PostNextCFEdge, StarNode, EndNode, Decision and Rule-
Node. These events are also parametrized with the classes of the 
model transformation engine. The Pre/PostNextCFEdge events 
have a parameter of type AgsiCFEdge which points to the flow 
edge in the control flow. After sending a PreNextCFEdge event, a 
ProcessNextCFEdge event has to be sent to the event handler to 
follow the edge. The ProcessNextCFEdge event has a parameter 
of type AgsiCFEdge as well. This parameter should point to the 
edge to follow, thus, by pointing to an edge other than the one 
used by the PreNextCFEdge event, we can jump to an arbitrary 
edge in the control flow. 

Rule nodes in the control flow are processed in the following 
steps: (i) The matcher algorithm searches for matches according 
to the LHS of the rule. If the rule node is configured for multiple 
matches, then several matches are found. Parts of the matches can 
also come from external causalities. (ii) The internal causalities of 
the rewriting rule are executed on the first match resulting in that 
several model elements may be deleted or created. (iii) In case of 
a multiple match, the following match is selected, and (ii) is per-
formed again. (iv) In case of an exhaustive match, the complete 
process is repeated from (i) until no match can be found. The 

individual steps of this process are also wrapped with events, we 
have created the pre/post versions of RuleNode, ApplyMultiple-
Match, ApplyCurrentMatch, ApplyInternalCausalities, ApplyIn-
ternalCausality events. The PreMatching event is sent before 
starting the matching phase, the PreInitMatch event is sent before 
initializing the match with the elements coming from external 
causalities. Influence on the matching and rewriting phase is also 
provided: the PreApplyCurrentMatch is fired before applying a 
match, however, one can override this match by sending an Ap-
plyCurrentMatch with parameters different from the ones in the 
PreApplyCurrentMatch. We can also override the set of applied 
internal causalities and each internal causality as well with the 
help of the ApplyInternalCausalities and the ApplyInternalCau-
sality events. The event flow of the rewriting phase is illustrated 
in Figure 3. The sequence diagram depicts the events fired be-
tween the transformation event handler and the animation engine 
when applying a rewriting rule including several causalities of it. 
This sequence diagram is included here for illustration purposes, 
not actually modeled, it is distilled from the state machine models, 
and only its implementation is generated. 

Animation model 

The animation can be described with the help of another visual 
language which can model state machines. These state machines 
communicate via events: the state transitions trigger the existence 
of a specific event on a specific port (or a specific event combina-
tion on a set of ports), and fire events when performing the state 
transition. The state machine is called Animator in our terminolo-
gy. Animators are modeled on two levels: (i) on the high-level 
representation several animators and event handlers can be con-
nected, and their interaction can be modeled, (ii) on the low level 
representation the individual states and transitions between the 
states of the state machine can be modeled.  

Figure 4 illustrates the composition of animators and event 
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Figure 2. Model transformation engine event handler 
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Figure 3. Event-flow of the rewriting phase 

 



handlers which implement the model transformation debugger. 
Event handlers (EH_UI, EH_GT, EH_Timer) can be seen on the 
left and right sides of the figure. The high level representation of 
three animators (SIM_GT, SIM_MatchHighlighter, SIM_Shortcut) 
is depicted on the top and the bottom of the figure. 

The EH_UI element references the UI event handler which 
wraps the user interface API of VMTS and the model manage-
ment methods. The EH_Timer element points to the event handler 
of a real-time clock, which fires Tick events with a predefined 
frequency. The frequency of the timer is set through the Frequen-
cy parameter of the event handler to 500 msec, thus one step is 
performed every half second in continuous execution of the trans-
formation.  

In Figure 4, one can see three animators: SIM_GT, 
SIM_MatchHighlighter and SIM_Shortcut. SIM_GT animates the 
control flow model, initiates the execution of the match and re-
writing operations. SIM_Shortcut catches the key-presses, and 
instructs the EH_Timer to fire a Tick event if the F11 key was 
pressed. This feature is useful, if the timer is paused, and the user 
can execute the transformation step-by-step by hitting the F11 
key. SIM_MatchHighlighter catches the mouse events, and high-
lights matched and created elements in the host and the output 
model of the transformation, if the mouse hovers over an element 
in the rewriting rule. Thus, we can check which elements were 
matched by which item in the LHS of the rule, and which new 
elements were created after the application of the rule. Using sev-
eral animators to provide a solution, we can clearly separate or-
thogonal aspects of the problem space. 

State machine models 

Figure 5 presents the internals of the SIM_MatchHighlighter 
animator. Recall that this animator highlights those elements of 
the host model which are matched by the LHS element under the 
mouse cursor, and the elements of the output model that belong to 
the RHS element under the cursor. The default state of the anima-
tor is the Matching state. In case of a new match (PreApplyCur-
rentMatch event is received), the state machine stores the match 
in its lastMatch local variable, and resets the lastResult variable 

storing the newly created elements of the last rewriting. The ap-
propriate guard condition is: 

PortGT.PeekIsOfType<EH_GT.PreApplyCurrentMatch>() && 

PortGT.PeekAs<EH_GT.PreApplyCurrentMatch>().Match!= null 

The corresponding action expression is: 

lastMatch = 

PortGT.PeekAs<EH_GT.PreApplyCurrentMatch>().Match;   

lastResult = null; 

The PostApplyCurrentMatch transition triggers an event with 
the same name, and stores the set of newly created elements in the 
lastResult local variable. 

If the mouse hovers over a model item, a MouseEnter event is 
fired by the UI event handler. We have to filter it only for the 
nodes in the rewriting rules with the following guard condition: 

PortPeripherals.PeekIsOfType<EHUI.EventMouseEnter>() &&   

PortPeripherals.PeekAs<EHUI.EventMouseEnter>().View. 

Model.AgsiMetaID.Equals(META_NODE); 

The action expression which fires a HighLight event through 
the PortViews port for matched or created elements is listed be-
low: 
List<Node> match; 

Node ruleNode = 

(Node)PortPeripherals.PeekAs<EHUI.EventMouseEnter>(). 

   View.Model.AgsiItem; 

if (lastMatch.TryGetValue(ruleNode, out match) ||     

lastResult != null && lastResult.TryGetValue(ruleNode, 

out match)) 

  foreach (Node n in match) 

    Fire ( new EHUI.EventHighlight(this) { Element = n, 

Color = Colors.Green }, PortViews); 

A more complex scenario is implemented by the SIM_GT 
animator. It is responsible for (i) animating the control flow mod-
el, including detecting breakpoints and performing jumps, (ii) 
initiating the execution of rewriting rules, (iii) visualizing the 
changes of the output model. The internal structure of the anima-
tor is depicted in Figure 6. States and transitions in block (1) are 
used to initialize the transformation, to open the host and create 
the output model and to obtain a reference to the opened dia-
grams. The Executing state can be considered as a default state of 
the animation, the processing of the individual elements of the 
control flow model are initiated and finished in this state. Blocks 
(3), (4), (5) and (6), (7) are similar in the sense that they are re-
sponsible for processing and highlighting the elements of the con-
trol flow, namely the start node, edges, rule nodes, decisions and 
the stop node. Block (4) is entered after receiving a Pre-
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Figure 4. High level animation model of the debugger 



NextCFEdge event. At this point we have the possibility to para-
metrize the ProcessNextCFEdge event with another edge, and 
step to an arbitrary point in the control flow model. This parame-
ter can be set after testing whether an Alt+click event is received 
(Alt+click on an edge is used to jump to the edge). Consequently 
the guard expression before the GetNexCFEdge state is 

PortPeripherals.PeekIsOfType<EHUI.EventMouseClicked>() 

&& PortPeripherals.PeekAs<EHUI.EventMouseClicked>(). 

ModifierKeys == ModifierKeys.Alt && PortPeripherals. 

PeekAs<EHUI.EventMouseClicked>().View.Model.AgsiMetaID. 

Equals(META_EDGE) 

In case of a successful evaluation of the guard condition, the 
processing of the control flow jumps to the new edge, otherwise 
the ProcessEdge will be the following state, and the execution 
continues in a normal way. 

Due to the interpreted feature of the graph rewriting engine of 
VMTS, one can freely edit the control flow and also the host and 
output models during the debug process as well. 

3. Related work 
AToM3 [9] is a general purpose metamodeling environment with 
simulation and model animation features. AToM3 supports graph 
rewriting-based model transformations with a graphical editor for 
the definition of the rules; furthermore, the interactive debugging 
of transformations is also possible. The processed model can be 
animated according to the operations of the model transformation. 
The transformation can be executed in continuous mode or step-
by-step. Compared to VMTS, AToM3 does not support break-
points or direct jumps between rewriting rules. Checking the re-
sult of a successful match is not possible either. 

Graph Rewrite And Transformation (GReAT) [10] is a visual 
language and toolset to define and execute graph rewriting-based 
model transformations. GReAT has an approach similar to that of 
used in VMTS in the sense of graphical rule definition and the 
sequencing of the rules with a control-flow language. GReAT 
provides advanced debugging features including step-by-step 
execution of rules, and the application of breakpoints. The results 
of successful matches and the results of the rewriting rules are 
also logged in detail. However, inspecting the operations of the 
transformations in a visual way is not supported, although one can 
trace the transformation with the help of a textual interface. 

The Attributed Graph Grammar System (AGG) [11] is an en-
vironment for developing graph rewriting based transformations. 
One can follow the execution of a transformation in AGG visual-
ly, including the applied rewriting rule and the host graph. The 
manual definition of matches is also supported by the environ-
ment. A transformation can run continuously or step-by-step, 
however, the process cannot be paused by predefined breakpoints 
in the rule-application sequence. 

MetaEdit+ [12] is a general purpose metamodeling tool. It 
supports model animation through its Web Service API. Model 
elements in MetaEdit+ can be animated by inserting API calls into 
the code generated from the model, or by modifying the code 
generator to automatically insert these calls. If the attributes of a 
model element are changed, its visualization is automatically up-
dated. The update mechanism can be influenced with constraints 
written in a proprietary textual script language of MetaEdit+. The 
modification of model attributes in VMTS also results in the au-
tomatic update of the presentation with the help of data binding. 
Applying converters to the data binding we can perform an arbi-
trary transformation on the presented data, this is a similar ap-
proach to constraints in MetaEdit+. Compared to VMTS, 
MetaEdit+ does not provide a graphical notation to define anima-
tion or for the integration of external components. 

As of writing we are not aware of other visually modeled 
graph rewriting-based model transformation debuggers. Related 
work enumerated above provides hard-coded solutions for tracing 
and debugging transformations. 

4. Conclusion 
We have presented a visual debugger solution for model proces-
sors. The debugger is defined with the help of visual modeling 
techniques. Building on the VMTS Animation Framework, we 
could easily connect the animation of the user interface with the 
model transformation engine.  

We have modeled the problem area on three levels. (i) The 
event handler model is used to wrap the model transformation 
engine with an event based interface. (ii) The high-level animation 
model connects event handlers with animators defining orthogon-
al aspects of the problem. (iii) The state machine models integrate 
the messages of the user interface and the transformation frame-
work. They decompose the events of the transformation engine to 
a set of UI events (e.g. opening several diagrams after processing 
the start node ), and also integrate messages of the event handlers 
into one or several new events (e.g. sending EventHighLight 
events after receiving timer PreApplyCurrentMatch and Mou-
seOver events). The skeleton of the event handler implementation 
is generated based on the event handler model; the animation 
model and the low-level state machines are used generate the 
executable binaries implementing the debugger. 

Future work includes the extension of breakpoints and jumps 
on further elements in addition to edges, and the improvement of 
breakpoints to stop the execution only if a predefined condition is 
satisfied. We would also like to provide a built-in OCL interpreter 
to evaluate OCL expressions on the transformed models at run-
time. Similarly, we would also like to support the modification of 
causalities, especially the changing of their Imperative OCL code 
at runtime. 
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