
Visual Specification of a DSL Processor Debugger

Tamás Mészáros
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

mesztam@aut.bme.hu

Tihamér Levendovszky
Budapest University of Technology and Economics
Department of Automation and Applied Informatics

tihamer@aut.bme.hu

Abstract
Graph rewriting-based model transformation is an essential tool to
process graph-based visual models. If the execution of transfor-
mations is not supported by the continuous presentation of the
modifications performed on the model, the traceability and the
debugging of transformations becomes difficult. Recent modeling
tools usually support the definition of rewriting rules based trans-
formations in a visual or textual way, and only a few of them sup-
port visual debugging facilities. These debuggers are hand-coded
at a price of a huge amount of work. This paper presents a model
transformation debugger built on the top of the animation frame-
work and the transformation engine of the Visual Modeling and
Transformation System. The integration of the transformation
engine and the animation of the user interface are described with
visual modeling techniques.

Categories and Subject Descriptors I.6.2., I.6.3. [Simulation
and Modeling]: Simulation Languages, Applications

General Terms Design, Languages

Keywords Model transformation, Animation, VMTS

1. Introduction
Domain-specific modeling is a powerful technique to describe
complex systems in a precise but still understandable way. The
strength of domain-specific modeling lies in the application of
domain-specific languages to describe a system. Domain-specific
languages are specialized to a concrete application domain; there-
fore, they are particularly efficient in their problem area compared
to general purpose languages.

Models created with such languages usually need further au-
tomated processing methods to utilize the information expressed
by the models in real, end-user applications. The processing may
be similar to the source code compilers which convert human-
readable source code to byte-code or machine code executed by
the hardware or a virtual machine, but various model-to-model
transformations are also frequent.

When developing a model processor for a language, it is im-
portant to be able to efficiently trace and debug the operations
performed by the processor. It is not negligible how much effort is
required to develop a visual debugger either. The motivation of
our work is to provide a model transformation debugger solution
built with the help of visual modeling techniques.

Visual Modeling and Transformation System (VMTS) [1] is a
general purpose metamodeling environment supporting an arbi-
trary number of metamodel levels. Models in VMTS are
represented as directed, attributed graphs the edges of which are
also attributed. The visualization of models is supported by the

VMTS Presentation Framework (VPF) [2]. VPF is a highly cus-
tomizable presentation layer built on domain-specific plugins
which can be defined in a declarative manner.

VMTS Animation Framework

The VMTS Animation Framework (VAF) [3] is a flexible frame-
work supporting the real-time animation of models both in their
visualized and modeled properties. The architecture of VAF is
illustrated in Figure 1.

VAF separates the animation of the visualization from the dy-
namic behavior (simulation) of the model. For instance, the dy-
namic behavior of a graphically simulated statechart is really
different from that of a simulated continuous control system mod-
el. In our approach, the domain knowledge can be considered a
black-box whose integration is supported with visual modeling
techniques. Using this approach, we can integrate various simula-
tion frameworks or self-written components with event-driven
communication. The animation framework provides three visual
languages to describe the dynamic behavior of a metamodeled
model, and their processing via an event-driven concept. The key
elements in our approach are the events. Events are parametrizable
messages that connect the components in our environment. The
services of the Presentation Framework, the domain-specific ex-
tensions, possible external simulation engines (ENVIRONMENT
block in Figure 1) are wrapped with event handlers, which pro-
vide an event-based interface. Communication with event han-
dlers can be established using events. The definition of event
handlers is supported with a visual language. The visual language
defines the event handler, its parameters, the possible events, and
the parameters of them - called entities (Event handler model in
the figure). The default implementation of an event handler is
generated based on the model, but the event handler methods
which interact with the wrapped object have to be written manual-
ly (Implementation block).

The animation logic can be described using an event-driven
state machine, called Animator (Animator state machine block).
We have designed another visual language to define these state
machines. The state machine consumes and produces events. The
transitions of the state machine are guarded by conditions (Guard
property) testing the input events and fire other events after per-
forming the transition (Action property). States also define an
Action property, which describes an operation that is executed
when the state becomes active. The input (output) events of the
state machine are created in (sent to) another state machine or an
event handler. The events produced by the event handlers and the
state machines are scheduled and processed by a DEVS [4] based
simulator engine (Animation Engine).

The event handlers and the state machines can be connected in
a high-level model (High level animation model). The communi-
cation between components is established through ports. Ports can
be considered labeled buffers, which have a configurable but pre-
defined size.

On executing an animation, both the high-level model and the
low-level state machines are converted into source code, which is
executed after an automated compilation phase.

Graph rewriting

Recall that in VMTS, models are represented as directed, attri-
buted graphs. Model elements are represented by nodes and the
connections between the elements are defined by the edges of the
graph. This representation facilitates the applications of various
graph transformation algorithms. Graph rewriting [5] is a power-
ful technique for applying graph transformations. Graph transfor-
mation consists of rewriting rules. Each rewriting rule has two
parts: a Left Hand Side (LHS) and a Right Hand Side (RHS). The
LHS defines a model pattern which has to be found in the input
model, while the RHS describes a substitute pattern the match of
the LHS has to be replaced with. Editing graph rewriting rules is
supported via the Rule Editor plugin of VMTS. The execution
order of rewriting rules can be defined with the help of the Visual
Control Flow Language [6]. A Visual Control Flow model may
contain six types of elements: Start node, End node, Rule node,
Decision node, Flow edge and External causality edge. The Flow
edge indicates the direction of the control flow. The Start node
defines the entry point of the transformation, it also specifies the
output model (if different from the input model). The End node
indicates the end of the transformation. The Rule node means the
application of a rewriting rule, which is defined in another model,
and the Rule node only references that model. The Decision node
is used to branch in the flow based on a predefined Object Con-
straint Language (OCL) [7] condition. The external causality edge
can declare that an element on the LHS of a rule matches another
element on the RHS of another rule. The operation described by a
rewriting rule is called internal causality in our terminology.
There are three types of internal causalities: (i) create, which is
used to create new elements in the output model; (ii) modify,
which is appropriate for changing the attributes of the matched
elements and (iii) delete, which deletes a specified subset of nodes

matched on the LHS. The create and modify causalities are de-
fined using the Imperative OCL [8] language.

The application of a rewriting rule usually consists of two
main steps: (i) searching a subgraph (match) in the input model
that matches the LHS pattern of the rule, (ii) execution of the
rewriting rules. If the Exhaustive attribute of the rewriting rule is
set to true, then the same rule is applied until no match can be
found. Otherwise, the next rule along the control flow is applied.

2. A DSL Processor Debugger
The aim of building a debugger for visualizing model transforma-
tions is to be able to trace the transformation process, and to have
the possibility to intervene at runtime. Thus, we had the following
objectives before beginning to design the debugger: (i) the input
and output models should be visualized and should always reflect
the current state of the models; (ii) the control flow model should
be animated to be able to exactly trace the execution of the trans-
formation; (iii) the actually executed rewriting rule should also be
shown and in case of a successful match, the match should be
visualized; (iv) the transformation should run step-by-step and
continuously, the continuous running should be able to be inter-
rupted by breakpoints, and the user should be allowed to perform
jumps in the control flow, (v) it would also be welcome, if the
models (at least the host and the target) could be edited at runtime.

Event handler model

The model of an event handler defines the events it can handle,
the parameters of the events, and the interface of the event hand-
ler. The interface of a component is described by a set of ports:
both event handlers and state machines provide their services
through ports which can be connected to each other.

Before implementing the animation logic with event-driven
state machines, we had to wrap our graph transformation engine
(the “ENVIRONMENT” in this case) with an event handler, to
provide an event-driven uniform interface for the animators.
However, after performing the wrapping, we can use this event
handler not only for the debugging solution, but also for various
other simulations requiring graph rewriting-based model trans-
formation.

PortPN PortTimer PortViews PortModels

GetDiagramView Default

Selecting

GettingView

Highlighting

Firing

[no fireable transitions]

PortPN:EventGetFireableTransition

[fireable transition]

PortViews:EventGetView

[PortViews:EventGetView_]

PortViews:EventHighlight

[PortTimer:Tick]

[PortTimer:Tick]

PortPN:EventFire

PortViews:UnHighlight

EH
_U

I (
…

)

PNAnimator

PortModels PortViews PortPN PortTimer

Po
rtM

od
el

s
Po

rtV
ie

w
s

EH
_PetriNet (…

)

PortP
N

EH
_Tim

er (…
)

PortTim
er

Initialize

EH_GT

PortGT

ProcessNextCFEdge

ProcessStartNode

Matching

ApplyCurrentMatch

ApplyInternalCausalities

ApplyInternalCausality

Initialized

PreNextCFEdge

PostNextCFEdge

PreStartNode

PostStartNode

PreDecision

PreEndNode

PreRuleNode

PreInitMatch

PreMatching

PreApplyMultipleMatch

PreApplyCurrentMatch

PreInternalCausalities

PreInternalCausality

PostInternalCausality

PostInternalCausalities

PostApplyCurrentMatch

PostApplyMultipleMatch

PostRuleNode

AgsiCFEdge

InternalCausalityResult

AgsiCFEndNode

TrafoOutputPlaces

AgsiInternalCausality

IAgsiCFNode

AgsiRuleExecutionResults

Animator state machineHigh level animation model

Event handler modelEvent handler
implementation

Animated model

.

Animation
engine

apply

gen.

ref.

EN
V

IR
O

N
M

EN
T

.

Domain knowledge and
simulation engines

Figure 1. Architecture of the VMTS Animation Framework

Figure 2 illustrates the event handler model of the model trans-
formation engine. The event handler (EH_GT) defines one port
(PortGT) to send and receive events. On the left hand side the
events received by the event handler can be seen, on the right
hand side the events sent by the event handler are presented. In
the middle, the entities (the parameters used by the events) are
enumerated. The events sent by the event handler usually begin
with “Pre” or “Post”. The pre-events are fired before performing
a specific operation, whereas the post-events are fired afterwards.
After sending a pre-event, the event handler usually waits for
another event to instruct the transformation engine to perform a
step. Thus, we have the possibility to skip an operation or to mod-
ify its parameters. We have defined a pre-post event pair for each
type of element in the transformation control flow:
Pre/PostNextCFEdge, StarNode, EndNode, Decision and Rule-
Node. These events are also parametrized with the classes of the
model transformation engine. The Pre/PostNextCFEdge events
have a parameter of type AgsiCFEdge which points to the flow
edge in the control flow. After sending a PreNextCFEdge event, a
ProcessNextCFEdge event has to be sent to the event handler to
follow the edge. The ProcessNextCFEdge event has a parameter
of type AgsiCFEdge as well. This parameter should point to the
edge to follow, thus, by pointing to an edge other than the one
used by the PreNextCFEdge event, we can jump to an arbitrary
edge in the control flow.

Rule nodes in the control flow are processed in the following
steps: (i) The matcher algorithm searches for matches according
to the LHS of the rule. If the rule node is configured for multiple
matches, then several matches are found. Parts of the matches can
also come from external causalities. (ii) The internal causalities of
the rewriting rule are executed on the first match resulting in that
several model elements may be deleted or created. (iii) In case of
a multiple match, the following match is selected, and (ii) is per-
formed again. (iv) In case of an exhaustive match, the complete
process is repeated from (i) until no match can be found. The

individual steps of this process are also wrapped with events, we
have created the pre/post versions of RuleNode, ApplyMultiple-
Match, ApplyCurrentMatch, ApplyInternalCausalities, ApplyIn-
ternalCausality events. The PreMatching event is sent before
starting the matching phase, the PreInitMatch event is sent before
initializing the match with the elements coming from external
causalities. Influence on the matching and rewriting phase is also
provided: the PreApplyCurrentMatch is fired before applying a
match, however, one can override this match by sending an Ap-
plyCurrentMatch with parameters different from the ones in the
PreApplyCurrentMatch. We can also override the set of applied
internal causalities and each internal causality as well with the
help of the ApplyInternalCausalities and the ApplyInternalCau-
sality events. The event flow of the rewriting phase is illustrated
in Figure 3. The sequence diagram depicts the events fired be-
tween the transformation event handler and the animation engine
when applying a rewriting rule including several causalities of it.
This sequence diagram is included here for illustration purposes,
not actually modeled, it is distilled from the state machine models,
and only its implementation is generated.

Animation model

The animation can be described with the help of another visual
language which can model state machines. These state machines
communicate via events: the state transitions trigger the existence
of a specific event on a specific port (or a specific event combina-
tion on a set of ports), and fire events when performing the state
transition. The state machine is called Animator in our terminolo-
gy. Animators are modeled on two levels: (i) on the high-level
representation several animators and event handlers can be con-
nected, and their interaction can be modeled, (ii) on the low level
representation the individual states and transitions between the
states of the state machine can be modeled.

Figure 4 illustrates the composition of animators and event

Initialize

EH_GT

PortGT

ProcessNextCFEdge

ProcessStartNode

Matching

ApplyCurrentMatch

ApplyInternalCausalities

ApplyInternalCausality

Initialized

PreNextCFEdge

PostNextCFEdge

PreStartNode

PostStartNode

PreDecision

PreEndNode

PreRuleNode

PreInitMatch

PreMatching

PreApplyMultipleMatch

PreApplyCurrentMatch

PreInternalCausalities

PreInternalCausality

PostInternalCausality

PostInternalCausalities

PostApplyCurrentMatch

PostApplyMultipleMatch

PostRuleNode

AgsiCFEdge

InternalCausalityResult

AgsiCFEndNode

TrafoOutputPlaces

AgsiInternalCausality

IAgsiCFNode

AgsiRuleExecutionResults

Figure 2. Model transformation engine event handler

Animation engineGT event handler

PreApplyCurrentMatch

ApplyCurrentMatch

PreApplyInternalCausalities

ApplyInternalCausalities

PreApplyInternalCausality

ApplyInternalCausality

PostApplyInternalCausality

PreAppyInternalCausality

ApplyInternalCausality

PostApplyInternalCausality

...

PostInternalCausalities

PostApplyCurrentMatch

Figure 3. Event-flow of the rewriting phase

handlers which implement the model transformation debugger.
Event handlers (EH_UI, EH_GT, EH_Timer) can be seen on the
left and right sides of the figure. The high level representation of
three animators (SIM_GT, SIM_MatchHighlighter, SIM_Shortcut)
is depicted on the top and the bottom of the figure.

The EH_UI element references the UI event handler which
wraps the user interface API of VMTS and the model manage-
ment methods. The EH_Timer element points to the event handler
of a real-time clock, which fires Tick events with a predefined
frequency. The frequency of the timer is set through the Frequen-
cy parameter of the event handler to 500 msec, thus one step is
performed every half second in continuous execution of the trans-
formation.

In Figure 4, one can see three animators: SIM_GT,
SIM_MatchHighlighter and SIM_Shortcut. SIM_GT animates the
control flow model, initiates the execution of the match and re-
writing operations. SIM_Shortcut catches the key-presses, and
instructs the EH_Timer to fire a Tick event if the F11 key was
pressed. This feature is useful, if the timer is paused, and the user
can execute the transformation step-by-step by hitting the F11
key. SIM_MatchHighlighter catches the mouse events, and high-
lights matched and created elements in the host and the output
model of the transformation, if the mouse hovers over an element
in the rewriting rule. Thus, we can check which elements were
matched by which item in the LHS of the rule, and which new
elements were created after the application of the rule. Using sev-
eral animators to provide a solution, we can clearly separate or-
thogonal aspects of the problem space.

State machine models

Figure 5 presents the internals of the SIM_MatchHighlighter
animator. Recall that this animator highlights those elements of
the host model which are matched by the LHS element under the
mouse cursor, and the elements of the output model that belong to
the RHS element under the cursor. The default state of the anima-
tor is the Matching state. In case of a new match (PreApplyCur-
rentMatch event is received), the state machine stores the match
in its lastMatch local variable, and resets the lastResult variable

storing the newly created elements of the last rewriting. The ap-
propriate guard condition is:

PortGT.PeekIsOfType<EH_GT.PreApplyCurrentMatch>() &&

PortGT.PeekAs<EH_GT.PreApplyCurrentMatch>().Match!= null

The corresponding action expression is:

lastMatch =

PortGT.PeekAs<EH_GT.PreApplyCurrentMatch>().Match;

lastResult = null;

The PostApplyCurrentMatch transition triggers an event with
the same name, and stores the set of newly created elements in the
lastResult local variable.

If the mouse hovers over a model item, a MouseEnter event is
fired by the UI event handler. We have to filter it only for the
nodes in the rewriting rules with the following guard condition:

PortPeripherals.PeekIsOfType<EHUI.EventMouseEnter>() &&

PortPeripherals.PeekAs<EHUI.EventMouseEnter>().View.

Model.AgsiMetaID.Equals(META_NODE);

The action expression which fires a HighLight event through
the PortViews port for matched or created elements is listed be-
low:
List<Node> match;

Node ruleNode =

(Node)PortPeripherals.PeekAs<EHUI.EventMouseEnter>().

 View.Model.AgsiItem;

if (lastMatch.TryGetValue(ruleNode, out match) ||

lastResult != null && lastResult.TryGetValue(ruleNode,

out match))

 foreach (Node n in match)

 Fire (new EHUI.EventHighlight(this) { Element = n,

Color = Colors.Green }, PortViews);

A more complex scenario is implemented by the SIM_GT
animator. It is responsible for (i) animating the control flow mod-
el, including detecting breakpoints and performing jumps, (ii)
initiating the execution of rewriting rules, (iii) visualizing the
changes of the output model. The internal structure of the anima-
tor is depicted in Figure 6. States and transitions in block (1) are
used to initialize the transformation, to open the host and create
the output model and to obtain a reference to the opened dia-
grams. The Executing state can be considered as a default state of
the animation, the processing of the individual elements of the
control flow model are initiated and finished in this state. Blocks
(3), (4), (5) and (6), (7) are similar in the sense that they are re-
sponsible for processing and highlighting the elements of the con-
trol flow, namely the start node, edges, rule nodes, decisions and
the stop node. Block (4) is entered after receiving a Pre-

MouseOverMatching

MouseEnterPreApplyCurrentMatch

PostApplyCurrentMatch MouseLeave

PortViews PortPeripher PortGT

Figure 5. SIM_MatchHighlighter animator

EH
_U

I (
…

)

E

SIM_GT

PortModels PortLayout PortPeripher PortViews PortGT PortTimer

EH
_G

T (…
)

EH
_Tim

er (…
)

P
or

tM
od

el
s

P
or

tL
ay

ou
t

P
or

tP
er

ip
he

r
P

or
tV

ie
w

s

P
ortG

T
P

ort

SIM_GT

PortPeripherPortViews PortGT

SIM_Shortcut

PortPeripher PortTimer

Figure 4. High level animation model of the debugger

NextCFEdge event. At this point we have the possibility to para-
metrize the ProcessNextCFEdge event with another edge, and
step to an arbitrary point in the control flow model. This parame-
ter can be set after testing whether an Alt+click event is received
(Alt+click on an edge is used to jump to the edge). Consequently
the guard expression before the GetNexCFEdge state is

PortPeripherals.PeekIsOfType<EHUI.EventMouseClicked>()

&& PortPeripherals.PeekAs<EHUI.EventMouseClicked>().

ModifierKeys == ModifierKeys.Alt && PortPeripherals.

PeekAs<EHUI.EventMouseClicked>().View.Model.AgsiMetaID.

Equals(META_EDGE)

In case of a successful evaluation of the guard condition, the
processing of the control flow jumps to the new edge, otherwise
the ProcessEdge will be the following state, and the execution
continues in a normal way.

Due to the interpreted feature of the graph rewriting engine of
VMTS, one can freely edit the control flow and also the host and
output models during the debug process as well.

3. Related work
AToM3 [9] is a general purpose metamodeling environment with
simulation and model animation features. AToM3 supports graph
rewriting-based model transformations with a graphical editor for
the definition of the rules; furthermore, the interactive debugging
of transformations is also possible. The processed model can be
animated according to the operations of the model transformation.
The transformation can be executed in continuous mode or step-
by-step. Compared to VMTS, AToM3 does not support break-
points or direct jumps between rewriting rules. Checking the re-
sult of a successful match is not possible either.

Graph Rewrite And Transformation (GReAT) [10] is a visual
language and toolset to define and execute graph rewriting-based
model transformations. GReAT has an approach similar to that of
used in VMTS in the sense of graphical rule definition and the
sequencing of the rules with a control-flow language. GReAT
provides advanced debugging features including step-by-step
execution of rules, and the application of breakpoints. The results
of successful matches and the results of the rewriting rules are
also logged in detail. However, inspecting the operations of the
transformations in a visual way is not supported, although one can
trace the transformation with the help of a textual interface.

The Attributed Graph Grammar System (AGG) [11] is an en-
vironment for developing graph rewriting based transformations.
One can follow the execution of a transformation in AGG visual-
ly, including the applied rewriting rule and the host graph. The
manual definition of matches is also supported by the environ-
ment. A transformation can run continuously or step-by-step,
however, the process cannot be paused by predefined breakpoints
in the rule-application sequence.

MetaEdit+ [12] is a general purpose metamodeling tool. It
supports model animation through its Web Service API. Model
elements in MetaEdit+ can be animated by inserting API calls into
the code generated from the model, or by modifying the code
generator to automatically insert these calls. If the attributes of a
model element are changed, its visualization is automatically up-
dated. The update mechanism can be influenced with constraints
written in a proprietary textual script language of MetaEdit+. The
modification of model attributes in VMTS also results in the au-
tomatic update of the presentation with the help of data binding.
Applying converters to the data binding we can perform an arbi-
trary transformation on the presented data, this is a similar ap-
proach to constraints in MetaEdit+. Compared to VMTS,
MetaEdit+ does not provide a graphical notation to define anima-
tion or for the integration of external components.

As of writing we are not aware of other visually modeled
graph rewriting-based model transformation debuggers. Related
work enumerated above provides hard-coded solutions for tracing
and debugging transformations.

4. Conclusion
We have presented a visual debugger solution for model proces-
sors. The debugger is defined with the help of visual modeling
techniques. Building on the VMTS Animation Framework, we
could easily connect the animation of the user interface with the
model transformation engine.

We have modeled the problem area on three levels. (i) The
event handler model is used to wrap the model transformation
engine with an event based interface. (ii) The high-level animation
model connects event handlers with animators defining orthogon-
al aspects of the problem. (iii) The state machine models integrate
the messages of the user interface and the transformation frame-
work. They decompose the events of the transformation engine to
a set of UI events (e.g. opening several diagrams after processing
the start node), and also integrate messages of the event handlers
into one or several new events (e.g. sending EventHighLight
events after receiving timer PreApplyCurrentMatch and Mou-
seOver events). The skeleton of the event handler implementation
is generated based on the event handler model; the animation
model and the low-level state machines are used generate the
executable binaries implementing the debugger.

Future work includes the extension of breakpoints and jumps
on further elements in addition to edges, and the improvement of
breakpoints to stop the execution only if a predefined condition is
satisfied. We would also like to provide a built-in OCL interpreter
to evaluate OCL expressions on the transformed models at run-
time. Similarly, we would also like to support the modification of
causalities, especially the changing of their Imperative OCL code
at runtime.

Acknowledgement
This paper was supported by the János Bolyai Research Scholar-
ship of the Hungarian Academy of Sciences. The found of 'Mobile
Innovation Centre' has supported, in part, the activities described
in this paper.

PortGT PortViews PortModels PortLayout PortTimer

Initializing

ApplyLayout

OpenHostAndCF

GetCFDiagram

GetHostDiagram

GetWindowContent

ProcessingStart

HighlightStartNode

Executing

ShowResults

ApplyCurrentMatch

HighlightMatch

HighlightEdge HighlightDecisionProcessEndNode

HighlightRuleNode

CheckBreakpoint

ApplyBreakpointGetNewCFEdge ProcessEdge

(1)

(2)

(3)

(5)

(4)

(6)(7)

Figure 6. SIM_GT animator

References
[1] Visual Modeling and Transformation System http://vmts.aut.bme.hu
[2] Mészáros, T., Mezei, G. and Levendovszky, T., A Flexible, Declara-

tive Presentation Framework For Domain-Specific Modeling, Pro-
ceedings of the 9th International Working Conference on Advanced
Visual Interfaces, 2008, Naples

[3] Mészáros T., Mezei G., Charaf H., Engineering the Dynamic Beha-
vior of Metamodeled Languages, Submitted to Simulation: Transac-
tions of the Society for Modeling and Simulation International,
Special Issue: Multi-Paradigm Modeling: Concepts and Tools, 2008

[4] Zeigler B. P., Praehofer H., and Kim T. G., Theory of Modeling and
Simulation, Second Edition, Academic Press, 2000.

[5] Ehrig, H. et al., Fundamentals of Algebraic Graph Transformation,
Springer, 2006.

[6] Lengyel, L. et al., Control Flow Support in Metamodel-Based Model
Transformation Frameworks, Proceedings of the EUROCON 2005
IEEE International Conference on “Computer as a tool”, Belgrade,
2005, pp. 595-598

[7] OMG Object Constraint Language 2.0 Specification,
http://www.omg.org/docs/ptc/05-06-06.pdf, last visited on
2008.07.16

[8] OMG MOF QVT Final Adopted Specification,
http://www.omg.org/docs/ptc/05-11-01.pdf, last visited on
2008.07.16

[9] de Lara, J. and Vangheluwe, H., AToM3 : A Tool for Multi-
Formalism Modelling and Meta-modeling. In ETAPS/FASE’02,
LNCS 2306, pp. 174-188. Springer-Verlag

[10] Balasubramanian, D. et al., The Graph Rewriting And Transforma-
tion Language : GReAT, Proceedings of the Third International
Workshop on Graph Based Tools, 2006, Natal

[11] Taentzer G., AGG: A Tool Environment for Algebraic Graph Trans-
formation, LNCS 1779, pp. 333-341, Springer, 2000

[12] Tolvanen, J-P., MetaEdit+: integrated modeling and metamodeling
environment for domain-specific languages, In Companion to the
21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, 2006, Portland

