
A Generative Approach to Model Interpreter Evolution

Jing Zhang, Jeff Gray, and Yuehua Lin

Department of Computer and Information Sciences
University of Alabama at Birmingham

{zhangj, gray, liny} @ cis.uab.edu

Abstract. Domain-specific modeling techniques are being adopted with more frequency in
the engineering of computer based systems. In the presence of new stakeholder requirements,
it is possible that a meta-model undergoes numerous changes during periods of evolution.
There is a fundamental problem in maintaining the model interpreters in terms of such meta-
model schema changes. This position paper outlines the technical challenges involved in
providing evolution of model interpreters. The paper proposes an approach that is based on a
mature program transformation engine to automate the evolution of interpreters in the
presence of meta-schema changes.

1. Introduction

Domain-specific modeling (DSM) techniques are frequently adopted in the development of
computer-based systems (CBS), especially in the domain of embedded control software (e.g.,
avionics and automotive control systems). Meta-configurable domain-specific modeling
environments [8, 10] provide support for customization of modeling tools that enable domain
experts to construct models in notations that are familiar to them. Such tools typically offer
the ability to generate, or synthesize various artifacts from domain models (e.g., synthesis of
input to analysis tools, or generation of source code from the models). The ability to describe
properties of a system at a higher abstraction level, and in a technology-independent notation,
can protect key intellectual assets from technology obsolescence. DSM also supports rapid
evolution of computer-based systems when the hardware and software configuration is tightly
coupled, but must frequently evolve to a new configuration schema (e.g., retooling in an
automotive factory or reconfiguration of an avionics product-line).

In DSM terminology, a meta-model defines the valid concepts and rules for constructing a
model in a specific domain and can be instantiated to provide a domain-specific modeling
language (DSML) that is customized to the visual representation and semantics appropriate
for that domain. A DSML may have multiple model interpreters associated with it that permit
synthesis of different types of software artifacts from the domain models. For example, one
interpretation may synthesize to C++ program source code, whereas a different interpretation
may synthesize to a simulation engine or analysis tool [12]. Generally speaking, a meta-
model is relatively stable and seldom changes during the process of the system evolution;
however, the meta-model may need to be modified or extended if it cannot represent concepts
described in new system requirements. Under such circumstances, each evolution of the
meta-model will typically break the interpreter that was defined on the previous version.
Consequently, there is a need to develop methods and tools to automate the evolution process
of model interpreters in the presence of meta-model schema changes. This position paper
outlines the motivation and technical challenges involved in providing evolution of model
interpreters, and investigates a generative approach [6] that uses a mature program
transformation system to assist in the automation of interpreter evolution.

2. Motivation and Technical Challenges

Changing stakeholder requirements often necessitate the need for evolution of the modeling
language associated with a domain. The evolution of a domain requires that changes be made
to the underlying meta-model. As shown in Figure 1, with the evolution of the meta-model,
the models and model interpreters that were defined under the previous meta-model are often
made invalid under the new meta-model. There exists some difference, ∆MM (termed a
maintenance delta in [4]) between the old meta-model and the new one, which captures the
evolving features of the domain. ∆MM must reflect the difference between the old and new
instance models (annotated as ∆M) such that the new models can preserve the original
semantics under the new meta-model definition. Additionally, ∆MM should also correspond to
the difference between the old and new interpreters (represented by ∆I) such that the new
interpreters can be adapted based on the new meta-model schemas.

The problem of schema evolution is common across many software development activities
(e.g., database schema evolution). To understand this phenomenon better, consider the
evolution of a programming language and a compiler defined for a specific definition of the
language. If the language were to evolve (e.g., Ada 83 to Ada 95) to a new syntax and
semantics, the previous programs may no longer be valid and the previous compilers will not
work under the new definition. When a programming language definition changes, it is
necessary to evolve the previous programs defined by the language. Modifications to the
compiler must also be made.

Regarding the notion of model evolution in the presence of meta-model schema changes (i.e.,
the automatic mapping from ∆MM to ∆M), work has already been done by others to address
this problem [2, 13]. The typical approach is to perform model transformations from one
representation schema to another using a model transformation engine. However, no research
has been conducted to address the more difficult problem of model interpreter evolution
(automatic mapping from ∆MM to ∆I). Model interpreters are often written in a general
programming language and traverse the internal data structure of a model in order to
synthesize a new artifact based on the model properties. Interpreters may invoke an API that

Figure 1. The evolution of the models and interpreters in terms of meta-model changes

∆MM: The changes made to the meta-models
∆M: The changes reflected in the domain models
∆I: The changes reflected in the model interpreters

Interpreter1

Model1

Meta-model1

Define

Interpret

Interpretern

Modeln

Meta-modeln

Define

Interpret

Interpreter0

Model0

Meta-model0

Define

Interpret

∆M 1

∆MM 1

∆I 1

∆M 2

∆MM 2

∆I 2

∆M n

∆MM n

∆I n ……

……

……

B
ased on

the modeling tool exposes to provide access to the model data structure. Alternatively, some
modeling tools may have a proprietary scripting language for defining the behavior of a
model interpreter. Regardless of the underlying approach for writing an interpreter (i.e., a
general programming language, or a proprietary scripting language), the problem of
interpreter evolution still remains. Current practice requires each model interpreter to be
modified manually after each meta-model schema change. This can be a time-consuming and
error prone task for complex model interpreters of considerable size.

A classic example of meta-model evolution is the specialization of a domain concept into two
or more derivations. Figure 2 illustrates two different meta-models (top of figure) and their
corresponding instance models (middle of figure). Pseudo-code is also provided at the bottom
of the figure as an example of the type of code written in a model interpreter. A simple meta-
model of a finite state machine (FSM) is shown in the top-left of the figure, which defines a
state diagram as a sequence of states that connect to each other by transitions. However, as
the domain evolves, a new requirement (right-hand side of Figure 2) may necessitate three
distinct kinds of states, including the start state, end state, and inner state. Furthermore, the
new meta-model may specify that there exist only one start state (with no input transitions
into it), as well as a constraint that the end-state have no output transitions.

As the meta-model of Figure 2 evolves, not only will the instance models be modified, but
also the corresponding model interpreters. For example, in order to start simulating the FSM,
the original interpreter (left-hand side) has to perform the following initialization procedures:

1. Search all of the states and iterate through them one by one.
2. For each state, if it has no incoming transitions, mark it as the start state.
3. If no start state exists, or if there is more than one start state, an error message will be

given and the interpreter will stop executing.
4. If a start-state was found, the simulation transfers execution control from the marked

state to the next state.

Comparatively, the interpreter for the new meta-model (right-hand side of Figure 2) simply
searches for the model atom named “StartState” and then begins the simulation. Current
practice would require that the former interpreter be re-written and transformed manually.
Because very few domains are completely stable, evolution of the meta-model will inevitably
break the connection to a pre-existing interpreter. This example illustrates the potential
advantage of automation for model interpreter evolution.

However, support for model interpreter evolution automation from higher-level models is not
well-represented in the research literature. This is because of the following four key
challenges:

1. Model interpreters are typically written by hand without any formal specification.
Various modelers may have different ways to interpret a model. Consequently, different
developers may program interpreters in various ways in order to achieve the same
behavior. It is hard to maintain and evolve such subjective realizations of an interpreter.

2. The formal specification that indicates each step of the meta-model transformation (as
represented from ∆MM 1 to ∆MM n in Figure 1) is also required in order to capture the
evolving domain designs. Moreover, such meta-model transformation specifications must
include the entire knowledge for the underlying interpreter evolution. It is an onerous task
to map the high-level abstract model elements to the lower-level concrete details of the
corresponding source code.

Figure 2. The original meta-model/model/interpreter (left) and

the evolved meta-model/model/interpreter (right)

Old Metamodel/model/interpreter

New Metamodel/model/interpreter

CBuilderAtom *GetStartState(
 CBuilderModel *StateDiagram)
{

CBuilderAtom *startstate = null;

const CBuilderAtomList *states =

 StateDiagram->GetAtoms("State");

 POSITION pos=states->GetHeadPosition();

 while(pos)
 {

CBuilderAtom *st =
 states->GetNext(pos);

 const CBuilderConnectionList *cons =
 st->GetInConnections("Transition");

 if (cons == null)
 if (startstate == null)
 startstate = st;

 else <<ERROR: more than one state
 has no InConnections>>
 }

ASSERT (startstate !=null);

 return startstate;
}

CBuilderAtom *GetStartState(
 CBuilderModel *StateDiagram)
{
const CBuilderAtomList *startstates =

 StateDiagram->GetAtoms("StartState");

ASSERT(startstates->GetCount()==1);

CBuilderAtom *startstate =

 startstates->GetHead();

 return startstate;
}

3. If the formal specification is unavailable for the meta-model transformation (e.g., only
meta-model0, meta-modeln, model0, modeln and interpreter0 in Figure 1 are available, and
all of the intermediate transformation specification deltas are absent), a rigorous
algorithm has to be developed for the meta-model difference comparison between meta-
model0 and meta-modeln. More importantly, this algorithm must have the capability to
embody enough knowledge to infer the low-level interpreter difference (i.e., ∆I in Figure
1) that is used for the code transformation. Developing such a super intelligent algorithm
is very arduous and time-consuming, if not unfeasible.

4. From our previous experience, complex model interpreters can reach several thousand
lines of source code. The need to make the interpreters applicable to the new meta-model
requires the invasive capability to alter the interpreter source code. Thus, a mature parser
must be constructed to parse the underlying interpreter source. In addition, a powerful
program transformation engine is also required to perform the large-scale adaptations to
the interpreters according to the model transformation specifications that are described at
the model level.

3. A Generative Solution: Model Interpreter Evolution Architecture

With respect to the challenges enumerated in the previous section, we are investigating the
feasibility of utilizing the Design Maintenance System (DMS) [5] to support parsing and
source-level transformation of the interpreter implementations. The core component of DMS
is an Abstract Syntax Tree (AST) term rewriting engine that supports powerful capabilities
for pattern matching and source transformation. An important feature of DMS is the source-
to-source transformation rules that can be applied to modify a large cross-section of a code
base. In our approach, domain models are represented in the Generic Modeling Environment
(GME) [11]. We provide a generative approach [6] to enforce a mapping from meta-model
transformations to the corresponding interpreter transformation through a model-driven

Figure 3. Overview of Model Interpreter Evolution Architecture

program transformation (MDPT) technique. In previous work, we have applied MDPT to
evolve a large avionics application based on properties of models [9], which is realized by
generating the DMS rewriting rules from high-level modeling specifications. This position
paper describes an approach that applies MDPT to model interpreters, not the underlying
computer-based system.

To implement and evaluate this approach, a Model Interpreter Evolution Architecture
(MIEA) is under investigation (see Figure 3). As the meta-model evolves, a formal
specification is needed to represent each step of the model transformation. The specification,
either represented in plain text (e.g., C-SAW [7]) or in a visual/modeling language (e.g.,
GReAT [2]), is then fed into the specific model transformation engine that will update the
corresponding models. In addition, this model transformation specification should contain the
information for transforming the underlying model interpreters. Such information can be
divided into two parts: 1) a pattern description of the interpreter signature, and 2) the
replacement rule to perform the transformation. The transformation specification will be used
to generate the DMS rewriting rules to transform the original interpreter into a new one that
matches the changes to the meta-model. In fact, allowing domain developers to specify
explicitly the DMS rewriting rules in the process of model transformation is a simple and
straight-forward approach. However, the domain experts/developers would most likely not
possess the knowledge to understand the complicated, low-level DMS rules. Such a reality
necessitates a high-level specification from which the DMS rules can be generated.

The combination of the model transformation specification and the DMS program
transformation engine, as illustrated in Figure 3, could provide a potential solution for
challenges 2 and 4 that were identified in Section 2. With respect to the third challenge, there
are several researchers investigating model difference comparison algorithms, such as [3].
Incorporating an existing well-developed algorithm can help to automate a set of DMS
rewriting rules based on model differences. Several simple examples are listed below:

1. Differences of names for any model entities, relationships and attributes. For instance, a
model named as “Model1” is now modified as “Model2.” The corresponding DMS rules
can be generated as:

rule ChangeName (id:identifier):
 expression_statement -> expression_statement =
"\id -> GetModels(\"Model1\");" -> "\id -> GetModels(\"Model2\");".

As a consequence, after applying this “ChangeName” rewriting rule to the DMS engine,
every statement like GetModels(“Model1”) would be replaced by
GetModels(“Model2”) in the interpreters (assuming the name “Model1” is unique in the
meta-model diagram).

2. Differences of model types. There are several types involved in the GME model entities,
such as model, atom, reference and set [1]. For example, within a “Networking” domain,
there may be an atom entity named “Router.” During the domain evolution, perhaps the
“Router” atom is converted to a “Router” model (a model can contain other atoms and
models, but an atom represents a final entity). The DMS rule fragment is:
rule ChangeModelType (id:identifier):
 expression_statement -> expression_statement =
 "\id -> GetAtoms(\"Router\");" -> "\id -> GetModels(\"Router\");".

After applying the “ChangeModelType” rewriting rule to the DMS engine, every
statement like GetAtoms(“Router”) would be transformed into GetModels(“Router”)
in the interpreters.

3. Differences of attribute types. In GME, an attribute type can be of type String, Integer,
Double, Boolean, or Enumeration. The following DMS rule presents an example for
changing a model entity Router’s attribute “Speed” from an Integer type to a Double:
rule ChangeAttrType ():
 declaration_statement -> declaration _statement =
 "int Router_speed;" -> "double Router_speed;".

After applying this “ChangeAttrType” rewriting rule to the DMS engine, every
declaration statement like “int Router_speed;” would be transformed into “double
Router_speed;” in the transformed interpreter. A rigorous naming rule should be applied
to the identifier used in the interpreters to indicate the attribute with the changed type. In
this example, the identifier (“Router_speed”) is named as the entity name (“Router”)
followed by an underscore and the attribute name (“speed”). This example emphasizes
the need to specify formally the effect of a model interpreter.

Nevertheless, only a few changes (i.e., those restricted to the modeling tool API invocation,
such as GetModels and GetAtoms in the above examples) can often be automated easily.
Other types of changes (e.g., OCL constraint changes) to the meta-model may only require
modifications to the models and will not affect the interpreters. However, most of the general
changes (especially those drastic semantic variations) made to the meta-model can hardly be
captured and reflected in the interpreters through the meta-model difference comparison
algorithm alone. This problem again triggers the necessity for the explicit formal
specification of the meta-model transformation.

4. Conclusion and Future Work

This paper outlines several challenges involved in model interpreter evolution and proposes a
generative approach to implement the automatic evolution of the model interpreters by the
transformation rules that are generated from high-level specifications. The initial architecture
for model interpreter evolution is being investigated to verify the feasibility of this approach
and its limitations.

There is another external factor that may force interpreter evolution. Although less frequent
than meta-model evolution, it is possible that the API provided by the modeling tool (i.e., the
interface coming out of the modeling API at the top of Figure 3) will also change. As an
example, a modeling tool may change its underlying internal data structures (e.g., a modeling
tool that moves from Microsoft COM-based containers to a C++ STL style of containers).
The future work will also investigate the evolution of model interpreters that are hard-coded
to a specific API in the presence of changes to the host modeling tool. Furthermore,
experimental studies will be conducted to evaluate the results of this research using well-
defined metrics to compare manual efforts with the proposed automated transformation
approach.

5. Acknowledgement

This work is supported by the DARPA Information Exploitation Office (DARPA/IXO),
under the Program Composition for Embedded Systems (PCES) program.

6. References

[1] The Generic Modeling Environment: GME 4 User’s Manual, Institute for Software

Integrated Systems, Vanderbilt University, 2004.
[2] Aditya Agrawal, Gábor Karsai, and Ákos Lédeczi, "An End-to-End Domain-Driven

Software Development Framework," Domain-Driven Development track, 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Anaheim, CA, 2003, pp. 8-15.

[3] Marcus Alanen and Ivan Porres, "Difference and Union of Models," Proceedings of the
UML 2003 Conference, Springer-Verlag LNCS 2863, San Francisco, California,
October, 2003, pp. 2-17.

[4] Ira D. Baxter, "Design Maintenance Systems," Communications of the ACM, 1992, pp.
73-89.

[5] Ira Baxter, Christopher Pidgeon, and Michael Mehlich, "DMS: Program
Transformations for Practical Scalable Software Evolution," 26th International
Conference on Software Engineering, Scotland, UK, May, 2004, pp. 625-634.

[6] Krzysztof Czarnecki and Ulrich Eisenecker, Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, 2000.

[7] Jeff Gray, Janos Sztipanovits, Douglas C. Schmidt, Ted Bapty, Sandeep Neema, and
Aniruddha Gokhale, "Two-level Aspect Weaving to Support Evolution of Model-
Driven Synthesis," in Aspect-Oriented Software Development, (Robert Filman, Tzilla
Elrad, Mehmet Aksit and Siobhán Clarke, eds.), Addison-Wesley, 2004, Chapter 30.

[8] Jeff Gray, Juha-Pekka Tolvanen, Matti Rossi, and guest editors, "Special Issue:
Domain-Specific Modeling with Visual Languages," Journal of Visual Languages and
Computing, Volume 15, Issues 3-4, 2004, pp. 207-209.

[9] Jeff Gray, Jing Zhang, Yuehua Lin, Suman Roychoudhury, Hui Wu, Rajesh Sudarsan,
Aniruddha Gokhale, Sandeep Neema, Feng Shi, and Ted Bapty, "Model-Driven
Program Transformation of a Large Avionics Framework," Generative Programming
and Component Engineering (GPCE 2004), Springer-Verlag LNCS, Vancouver, BC,
October, 2004.

[10] Gábor Karsai, Miklos Maroti, Ákos Lédeczi, Jeff Gray, and Janos Sztipanovits,
"Composition and Cloning in Modeling and Meta-Modeling," IEEE Transactions on
Control System Technology (special issue on Computer Automated Multi-Paradigm
Modeling), 2004, pp. 263-278.

[11] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Peter Volgyesi, Greg Nordstrom, Jonathan
Sprinkle, and Gábor Karsai, "Composing Domain-Specific Design Environments,"
IEEE Computer, 2001, pp. 44-51.

[12] Sandeep Neema, Ted Bapty, Jeff Gray, and Aniruddha Gokhale, "Generators for
Synthesis of QoS Adaptation in Distributed Real-Time Embedded Systems," First ACM
SIGPLAN/SIGSOFT Conference on Generative Programming and Component
Engineering (GPCE '02), Springer-Verlag LNCS 2487, Pittsburgh, PA, October 6-8,
2002, pp. 236-251.

[13] Jonathan Sprinkle and Gábor Karsai, "A Domain-Specific Visual Language For
Domain Model Evolution," Journal of Visual Languages and Computing, vol. 15, no. 2,
2004.

