
Balancing Simplicity and Expressiveness: Designing

Domain-Specific Models for the Reinsurance Industry

Hans Wegener∗

1 October 2004

Abstract

Swiss Re has established concepts and tools for specifying and evolving (seg-
mentation) models of its business. Based on a ”to be” model, ”as is” models are
integrated using integrity constraints between them. All these models are founded
upon business terminology. We report on two specific practical problems and our so-
lutions to them, namely avoiding branching in change management (through use of
temporal selection) and using soft constraints to avoid additional model elements.

1 Introduction

A reinsurance company, or reinsurer, insures insurance companies, also called (pri-
mary) insurers. Much like insurers assume risk for a fixed price from their clients,
either persons or organizations, reinsurers assume risk from primary insurers. De-
pending on their needs, primary insurers mainly buy reinsurance to either assume
a larger portfolio of similar small risks, and/or to pass on parts of a specific very
large risk. For further information on the subject of reinsurance, we refer the reader
to [1].

While both insurers and reinsurers assume risk, they are different in that a
primary insurer is a retailer with a relatively large customer base and relatively
few highly standardized products, while a reinsurer is a wholesaler with a relatively
small customer base and relatively large number of products specifically designed
for one client. As a result, the volume of data and transactions is not nearly as
much of a challenge for a reinsurer as it is for a primary insurer, or a retail bank,
for that matter. On the other hand, given product diversity, the size (and therefore

∗Swiss Re, Mythenquai 50/60, CH-8022 Zürich, Hans Wegener@swissre.com

1

mailto:Hansprotect _Wegener@swissre.com


clout) of many clients, and the global reach of the business, standardization is much
more difficult on the data side as well.

The nature of reinsurance business, the existence of long-standing legacy sys-
tems, and the absence of simplification alternatives made it practically impossible
to establish a joint, unifying architecture upon which both existing and future appli-
cations may be built. Hence, lacking a viable architecture upon which to construct
them, an architecture with which to integrate systems had to be sought instead.
Therefore, our goal was threefold:

1. Establish and manage a consistent model of the business and its financial
status to be specified by and communicated to reinsurance and finance domain
professionals.

2. Implement applications based on a stepwise refinement of the above business
model and support their integration by mapping the (implementation) models
onto each other.

3. Decouple applications in a way that their interfaces prove stable under evolu-
tion of the above business model.

Domain-specific models are intended to increase the proximity between speci-
fication and implementation or, in a way, narrow the communicative gap between
engineering and business. In order to do so, business-terminology takes on a more
central role in modeling. By doing so, however, modeling takes on more ambiguity
for the engineer, due to the less formal use of language in business settings. On
the other hand, business users are faced with the unfamiliar rigidity of formal lan-
guages. In this article we report about our experiences with a modeling language
for reinsurance business and financial accounting. More specifically, we explain our
experiences with balancing simplicity and expressiveness to cater for the needs of
business non-specialists unaccustomed to the world of formal languages.

2 Specification, Integration, and Evolution

2.1 Architectural Perspectives on the Business

In this article we use the terminology of the Model Driven Architecture (MDA),
as defined by the Object Management Group (OMG), to describe and delineate
architectural concepts [3]. Generally, we distinguish between three models:

• a computation-independent model (CIM),

• a platform-independent model (PIM), and

• a platform-specific model (PSM).



The CIM is used to represent concepts important to business. These include, for
example, the general ledger, risk model figure aggregation rules, carrier structure,
or customer segmentation. The PIM is used to represent a refined application per-
spective on the business. This comprises, for example, business processes, change
management, or access control. The PSM is used to represent the technology sub-
strate applications are directly implemented upon. This includes, for example, user
interfaces, relational databases, or messaging middleware.

For each of the above (CIM, PIM, and PSM), our company provides standardized
artifacts to be used in design and development. Three different corporate teams are
responsible for governing architectural practice regarding each model (information
and process architecture, application architecture, and technology architecture).
Mandatory project milestones are defined to check project artifacts produced for
architectural compliance.

2.2 ”To Be” and ”As Is” Models

In theory one could discard the CIM and just live with PIM and PSM. However, the
distinction between CIM and PIM is important to us. To business, the concept of
change is a remote one. Anecdotal evidence suggested to us early on that one has to
separate between the way business people see current goings-on and their perspec-
tive on history. Especially in non-life reinsurance and financial accounting, where
complexity is high and—literally—decades of business matter, this distinction is of
crucial importance. Furthermore, as any bigger company in the financial services
industry, we are plagued by legacy applications, which is a substantial investment
not easily done away with.

To achieve a clean separation of concerns, the CIM deals as a carrier of the
”to be” world, while the PIM is the place where ”as is” abstractions and, most
importantly, change are dealt with. The CIM is mapped to the PIM by a transfor-
mation mechanism to be detailed in Section 2.3. But there is not one single PIM,
there are—literally—dozens. In addition to history and legacy systems, the global
nature of our business adds jurisdiction to the equation. From the perspective of
the corporate headquarters, this is not a relevant abstraction, either. In fact, Swiss
Re operates numerous accounting systems for closing the local books of its legal
carriers, plus one for the entire firm that integrates data from all these. Therefore,
PIMs abound in that there is plenty of business abstractions in individual PIMs
that in theory belong to CIM. Notably, this is less an effect of bad architectural
management than of the intrinsic complexity of the business. As a result, the CIM
abstractions are moderately complex and not numerous, but the number of PIMs
is substantial and thus considerably increases complexity. Architectural artifacts
are thus specified at different levels of abstraction, with different models in mind.



In order to manage them concurrently, our integration architecture had to handle
three separate goals:

1. Define, structure, and declare constraints between business abstractions in a
model. We designed a tool enabling business users to model them on the basis
of business terminology. Thus they establish a CIM dubbed the reference
model. The tool repository is fully historized, providing version-based as well
as temporal access to its content.

2. Allow for variations of the business model in the way it is implemented. For
different applications, the structure can be manipulated, detail taken away and
adorned with technical representations of business abstractions. The resulting
PIM is a context-specific model of the reference model. This is, again, provided
by the mentioned modeling tool.

3. Provide mappings between different models based on their history or other
metadata to enable application integration and model evolution. PIMs can
be mapped to other PIMs only with reference to the CIM. We designed a
second tool for mapping between different PIMs that makes use of the CIM
for purposes of disambiguiation (of history).

The division of labor between historization, mapping, and integration was chosen
for different reasons. Legacy applications have little choice but to operate on the
premises they were designed upon. Therefore, the choice of change adoption has
to reside with the application integrating others. Separating between historization
and mapping enables us to avoid CIM bloat.

2.3 CIM and PIM Abstractions

Our language for creating business models is the Swiss Re Data Language (SDL).
As the name suggests, it is primarily designed to support modeling of content rather
than behaviour. The SDL Tool is our repository and modeling environment that
supports users in designing and understanding the structure of the business based
on the SDL, which has a history of four years. The most recent major release went
productive in June 2003.

In the SDL, reinsurance and/or finance concepts such as type of claim, currency,
account, industry segment, or investment category, are described by business terms.
Each business term exhibits a descriptive name (evoking its meaning), and a formal
definition (denoting its meaning). Name and definition are used to specify and/or
understand the business semantics behind concepts. Depending on their context of
use, business terms describe attribute types, attribute values, or entity types. They
belong to the CIM.



Figure 1: The line of business (extract) as seen from the corporate center perspective
(”to be”) and from the financial accounting point of view (”as is”). The numbers are the
codes as they are used in the latter’s context.

Business terms form the terminal symbols in SDL. They are then structured,
in our case hierarchically to form reference trees. A reference tree captures the
segmentation of the business (into specific and generic concepts) as it should be from
the corporate center perspective. Reference trees are represented by an attribute
type and group together attribute values. They belong to the CIM.

Business terms can also be used to represent entity types. Because it emanated
from the financial accounting world of our company, at this moment SDL only
supports hierarchical relationships between entities (as in the general ledger). (It
is considered to extend this model to more flexible use of relationships as in entity-
relationship modeling.) The resulting structure, represented by an attribute type,
is referred to as a custom tree. The values of the attribute type representing the
custom tree act as entity types, which in turn compose a number of attribute types
together. The resulting model element forms, again, part of the CIM.

Our carrier for forward-engineering PIMs out of CIMs is the context. A context
can be anything from an application (which it normally is) to an industry standard



to a mere illustration. It serves two separate purposes. First, it is used to associate
business terms with a context-specific representation, the codes. Second, it is the
platform for modeling context-specific variants of a reference tree, the filtered tree.
As the name suggests, a filtered tree contains a subset of the values of the reference
tree it is based upon. Furthermore, the taxonomic relationships between the values
are congruent with that of the reference tree in that a parent of a value in the
reference tree must also be its parent in the filtered tree, as long as it also occurs
there. As such, context are the place where metadata about structural mappings
between CIM and PIMs resides.

PIMs are administratively separate from the CIM, but there is a wide number of
interdependencies. In order to minimize the potential harm that can be caused the
SDL Tool checks overall repository consistency (CIM and PIMs). Hard constraints
guard against violations of repository integrity, while soft constraints merely provide
hints at potential inconsistencies outside the realm of the SDL Tool proper.

3 Simplicity vs. Expressiveness

3.1 Temporal Selection Instead of Branching

The CIM is defined as the model relevant to reflecting changes in the understanding
of the business. Therefore, all CIM elements are versioned to the end of managing
their lifecycle. Different changes can occur to the structure of a reference tree. At-
tribute values can be added, removed, moved, promoted, demoted, shifted, merged,
or split. Business terms themselves can be changed as well, notably their definition
or name. Business term versions are valid starting at some point in time, possibly
becoming invalid at another. At any given time, at most one version (and with it the
associated structures like reference or custom trees) is valid. Names are not iden-
tifying properties of business terms (homonyms do occur), hence we use a unique
identification number—the SDL-ID—to unambiguously identify them.

The SDL Tool does not support branching. Instead, temporal selection is the
mechanism for choosing repository object versions belonging to a specific configu-
ration. The definition of the valid version for a repository object is as follows:

1. its validity started in the past (valid from smaller than now),

2. it has the maximum version number of the above set, and

3. it is still valid (valid until bigger than now).

The reason for this design is an important business concept, invalidation. Invalid
repository objects are considered unfit for use in business. (More about that in a
minute.) If, for example, the version from the set of all object versions valid in the



Figure 2: Variant (PIM) integration via the reference (CIM) and across time as seen at
Swiss Re. The filtered trees can be easily mapped to the reference tree and back using
context-specific metadata. Temporal mappings are based on successor information. If
two applications X and Y want to integrate, they first map from the source application’s
PIM to the CIM, then across time and back to the target application’s PIM.

past is no longer valid, then by our above definition the object itself is no longer
valid (i.e., there exists no valid version).

As there is at most one valid version, the worst that can happen is that no valid
version exists at interface calls (or exchanges). This raises the issue of handling
CIM elements that are no longer considered valid. To deal with this, we make a
distinction between the lifecycle of business terms and the structures they are part
of. Any change to the structure of a reference tree leads to a new version; the
reference tree itself may only be valid or invalid. If it is invalid, it is no longer
considered part of the CIM. On the other hand, a value may posess a third state. If
it is invalid, but part of a valid reference tree, it is considered deprecated (cf. Table
1).

The distinction between business term version history and the term’s current
status gives way to an (in our opinion) elegant architectural decision we took with
respect to how applications integrate and react to evolution of the CIM. Generally,
there are three main players in our integration architecture:

1. a number of applications (OLTP, ODS, DWH, or OLAP), designed for their



Value Reference Tree Status

Valid Valid Valid
Invalid Valid Deprecated
Valid Invalid Invalid
Invalid Invalid Invalid

Table 1: The state of a business term is determined by its own validity, the validity of
the tree it is or has been part of, and whether it still is currently part of it. If it is not
part of the currently valid reference tree, the value is generally invalid (with respect to
that tree).

own PIM,

2. one model repository, containing the CIM and all PIMs, and

3. one mapping repository, with PIM-to-PIM mappings across a PIM’s history
and between different PIMs.

Applications use the model repository to store the PIM underlying its own de-
sign. The model repository is used to design the CIM, version n, and forward-
engineer the PIMs, version n for context version m, from it. If a CIM version n + 1
occurs, the PIMs version n + 1 for context version m can be generated based on
available metadata. If a local change occurs, a single PIM version n for context
version m + 1 can be created, leaving all other PIMs unaffected. This way it is
possible to keep applications in sync with the CIM.

Due to the structural integrity constraints, a PIM-to-CIM mapping is much
more simple than mapping between different (often consecutive) versions of a PIM,
or even worse, between different PIMs that are structurally only loosely correlated.
As for the mapping of different versions of a PIM, ambiguities can occur, for example
values can exhibit more than one parent value in the filtered trees they belong to.
(It may even happen in reference trees.) Here, manual intervention is required. The
metadata provided for mapping a PIM between different versions is stored in the
mapping repository and used by applications. The model repository is uninterested
in it. The same holds for mapping between PIMs, where ambiguities can occur
as well, for example values existing in one PIM’s filtered tree but not the other’s.
(Note that both PIMs are understood to refer to the same CIM version, for which
reason there no history-related ambiguities occur.)

As far as the lifecycle of attribute values is concerned, mappings are provided for
values that are truly invalid and have a known successor. Applications are required
to map them, especially at inbound interfaces. If no mapping is available, the value



Figure 3: Versions and time in SDL. The horizontal axis show the versions valid as of a
particular point in time.

must be rejected. As for deprecated values, the question when to make a deprecated
value truly invalid is a business decision. Hence, mappings may be provided or not,
and applications may use them or not. More specifically, some applications (notably
OLTP systems with strong auditability requirements) may decide to never change
the original values associated with some stored fact. However, the assumption is that
for most systems, the deprecation period is not indefinite, especially in management
reporting.

The welcome side-effect of such an architecture is that it allows for the automatic
handling of PIM-to-CIM mappings (and back to a PIM again). Given that we are
driving towards this goal, this is important to us. At the same time, there is a wide
range of tools at the discretion of applications to integrate with other applications
one the one side, and to extend or shorten their own adoption of the latest CIM
version on the other side. If, however, they decide to always stick with the current
CIM version, the complexity they are exposed to is tangibly reduced.

Temporal selection has possible unwelcome side-effects. For example, the idea
that any repository object exhibits at most one valid version may be inappropriate
for some settings. However, we have as of yet not encountered any such situation,
because by the very definition of it, the CIM is the ”to be” model. If anyone requires
his/her own model, the PIM can be used to combine a context with the reference to
create a PIM. Since contexts exhibit validites as well and filtered trees are combined



from reference trees and contexts, the additional degree of freedom is obtained.

3.2 Soft Constraints Instead of Additional Model Ele-
ments

Our use of soft constraints was caused by the need to accomodate conflicting needs
in the design of the CIM (and, as an effect, the PIMs). Many of the constraints are
not generic to the entire domain. We had three choices:

1. express this in the form of additional CIM elements, thus adding to model
complexity,

2. express this in only a few PIM elements, thus abandoning parts of our CIM-
centric model,

3. not express this in any model, thus allowing for inconsistencies in some PIMs
or the CIM.

We opted for choice three, because the other options were expressly rejected by
business users as ”too complex.” Thus we ended up with a CIM and PIMs that were
not expressive enough to model all the concepts existing in the real world. SDL Tool
administrators are merely warned of (not prohibited from causing) inconsistencies.
However, we did not yet run into any serious problems. Little (if any at all) confusion
was caused by the missing model elements. It turned out that in the specific context
of use there was so much redundant (i.e., tacit) knowledge available that the lack of
expressed constraints did not really make much of a difference for model consistency.
Expressing specific needs in the CIM can have a detrimental effect on other parties,
while not adding critical capabilities for the other. This makes the CIM much less
usable for many while not even really helping the remaining few. One can exploit
organizational correlations between IT and business by leaving out model elements
(i.e., non-generic business concepts), thus increasing the suitability for the task of
model(s) for business users. For example, the homonym rate in model repository
was thought to be a strong indicator of glossary intelligibility. However, in financial
accounting we found that our request to eliminate homonyms was rejected because
it was not percieved as useful.

A consequence of this kind of modeling are consistency issues. If the modeling
environment is no longer capable of checking consistency, the model is incomplete
with regards to the problem at hand. We have used different techniques to deal
with the resulting design space (cf. [4]), for example by having interfaces deal with
additional repository object states in change management (see below).

Along with the different version selection mechanisms of the SDL Tool (temporal
or version-based), we have begun to make application interfaces first-class abstrac-
tions in the PIMs and use mechanisms similar to profiles in the Unified Modeling



Language (UML) to further automate handling inconsistencies (and, besides, map-
pings). Applications will specify their change adoption model (e.g., real-time, de-
layed, none), involved PIMs, and one is capable of (semi-automatically) providing
PIM-to-PIM mappings, even across different referred-to CIM versions.

4 Position Statement

Based on our experience, we claim that soft constraints (i.e., warnings instead of
errors) are indispensible and should become an intrinsic part of domain-specific
modeling languages. Compiler builders have long and successfully employed this
technique. This will at the same time reduce complexity for the language user,
while not overly compromising consistency.

Secondly, in our experience validity and jurisdiction (not covered here) are in-
dispensible abstractions to be used in a globalized financial services company. So
far—in our taste—especially validities play an underrepresented role. The fact that
some configuration-management problems can be (halfway) solved with time as a
first-class repository abstraction speaks for it.

Third, in any larger environment dealing with legacy, inconsistency is an un-
welcome, but crucial issue to deal with. Outside pure forward-engineering settings,
consistency management must become part of engineering practice. This affects
modeling languages (see above), tools, and the development process.

Acknowledgements

The two introductory paragraphs on reinsurance business are an (almost) verbatim
copy from [2]; used with permission.

References

[1] R.L. Carter. Reinsurance: the Definitive Industry Textbook. Euromoney Insti-
tutional Investor PLC, 2000.

[2] Robert Marti. Information integration in a global enterprise – some experiences
from a financial services company. In Gerhard Weikum, Harald Schöning, and
Erhard Rahm, editors, BTW 2003, Datenbanksysteme für Business, Technologie
und Web, volume 26 of Lecture Notes in Informatics (LNI), pages 558–567.
Springer, February 2003.

[3] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management Group,
June 2003.



[4] Hans Wegener. Generative programming and incompleteness. In Krzysztof
Czarnecki, editor, OOPSLA Workshop on Generative Programming, October
2001.


	Introduction
	Specification, Integration, and Evolution
	Architectural Perspectives on the Business
	"To Be" and "As Is" Models
	CIM and PIM Abstractions

	Simplicity vs. Expressiveness
	Temporal Selection Instead of Branching
	Soft Constraints Instead of Additional Model Elements

	Position Statement

