
Domain-Specific Visual Modelling in AToM3

Hans Vangheluwe

School of Computer Science

McGill University

Montréal, Québec, CANADA

Juan de Lara

ETS Informática

Universidad Autonóma de Madrid

Madrid, SPAIN

Abstract

Domain- and formalism-specific modelling have the potential to greatly improve pro-
ductivity. They are able to exploit features inherent to a specific domain or formalism.
This will for example enable specific analysis techniques or the synthesis of efficient code.
The Traffic formalism, a new visual notation specific to the vehicle traffic domain is intro-
duced. Using AToM3, A Tool for Multi-formalism and Meta-Modelling, a Traffic-specific
modelling environment is built. This demonstrates how meta-modelling and graph rewrit-
ing allow one to rapidly develop complete visual domain-specific modelling environments.
The underlying philosophy of the work is to “model everything”. Finally, a number of di-
rections for future work on domain-specific visual modelling environments are suggested.

1 Introduction
Meta-modelling can help in defining high abstraction level notations. With meta-modelling,
we can describe, using a high-level, graphical notation, the (possibly graphical) syntax of lan-
guages for particular needs: domain-specific visual languages [11, 1]. Such languages have the
potential to greatly increase system quality and reduce development costs, as they are notations
tailored to specific needs.
Some (families of) languages such as the UML are rigourously defined through meta-modelling.
But meta-modelling the syntax of a language is only one side of the coin. One needs to formally
specify the semantics of a language. We may be interested in defining a language’s operational
semantics (i.e., how models described in the language are simulated or executed), or its de-
notational or transformational semantics (i.e., defining a mapping onto another well-defined
language; this may include code generation when mapping onto a virtual machine). We may
also wish to optimize the models (i.e., reduce the complexity without removing salient fea-
tures). As models, meta-models and meta-metamodels can all be described as attributed, typed
graphs, we use graph grammars [13], a formal, graphical and high-level notation to specify the
model transformations. As the Graph Grammar formalism can be meta-modelled in its own
right, a visual environment for manipulating transformation models can also be automatically
generated.
We have implemented these meta-modelling and graph transformation concepts in AToM3, A
Tool for Multi-formalism and Meta-Modelling. AToM3’s design has been described in [5, 3, 6].
The power of AToM3 has been demonstrated by modelling the DEVS formalism, Petri Nets and
Statecharts, GPSS, Causal Block Diagrams, and flow diagrams [4]. In AToM3, we follow the
maxim everything is a model. That is, not only formalisms and transformations are modelled
explicitly, but also composite types and the user interfaces of the generated tools. In fact, the
entire AToM3 tool was bootstrapped from a small kernel with code-generating capabilities.

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

Figure 1: A Traffic Model

2 The Traffic Formalism
To illustrate domain-specific modelling, we introduce the Traffic formalism, a new visual nota-
tion specific to the vehicle traffic domain. It is of course possible to model traffic systems using
a variety of modelling and simulation languages such as GPSS, DEVS, and Petri Nets. We
choose not to do this, but rather build a Traffic-specific modelling environment. This maximally
constrains users, allowing them, by construction, to only build syntactically and (for as far as
this can be statically checked) semantically correct models. Furthermore, the Traffic-specific,
visual syntax used matches the users’ mental model of the problem domain. Note how all
advantages of the aforementioned formalisms are not lost as we will map Traffic models onto
them. In this article, the Traffic semantics is expressed by mapping onto Petri Nets.
Figure 1 shows a small closed traffic system in which two vehicles are initially present (in the
location cars), go straight across an intersection (when no other vehicles are present), turn
left on a short road section which can only hold one vehicle, and either go back to their initial
location or turn left. Turning left brings them across another short road section which can only
hold one vehicle, back to the first intersection. After succesfully crossing this intersection, they
again go back to their initial location.
A cross denotes a road section which can have a time-varying number of vehicles in it. Road
sections are connected by arrows. Multiple arrows departing from a single road section indi-
cates a choice. A capacity constraint circle may be connected to a number of road sections. The
total number of vehicles in all those sections may not exceed the capacity. It is clear that this no-
tation is specific to the vehicle traffic domain and that it allows for the description of a plethora
of traffic configurations. Note how we have chosen to make Traffic an un-timed formalism to
allow for high abstraction level, conservative analysis.

3 Meta-Modelling
When modelling complex physical or logical systems it is desirable to use the most appropriate
formalism to optimally describe their different aspects or components. In this case, one has to
solve the problem of building and interconnecting a host of different tools, especially built for
each formalism. Meta-modelling [9, 10] alleviates these problems.

name type=String init.val
num_vehicles type=Integer

RoadSection

name type=String init.val
num_vehicles type=Integer
infinite_supply type=Enum

Source

name type=String init.val
num_vehicles type=Integer

Sink

capacity type=Integer ini
name type=String init.val

Capacity

CapacityOf

FlowTo

Source2Section Section2Sink

Figure 2: Entity Relationship Diagram Meta-Model of Traffic

As an example, we briefly describe how to build a meta-model for the Traffic formalism with
AToM3. In AToM3, the default meta-formalism is Entity-Relationship Diagrams. To define the
meta-model, one has to provide an abstract syntax (denoting entities of the formalism, their
attributes, relationships and constraints) as well as a concrete graphical syntax (how the entities
and relationships should be rendered in a visual interactive tool, as well as the possible graphical
constraints). The Traffic meta-model shown in Figure 2 prescribes which entities are allowed in
the formalism with their attributes and how they may be connected. Not shown is the definition
of the graphical appearance (seen in Figure 1) of these entities, global attributes (such as the
model name, and author) nor are constraints.
Once the formalism is modelled, AToM3 generates Python (www.python.org) code which can
be loaded by the AToM3 kernel. Once this compiled Traffic meta-model is loaded, the tool only
accepts valid Traffic models. Using AToM3, the effort to produce a customized visual modelling
tool can be reduced to just a few hours for typical formalisms.

4 Model Transformation
The transformation of models is a crucial element in all model-based endeavours. As in many
cases, models, meta-models, and meta-meta-models are all attributed, typed graphs. These
graphs can be transformed by means of graph rewriting. The rewriting is specified in the form
of models in the Graph Grammar formalism. Graph grammars are a generalization of Chomsky
grammars, for graphs [13] [7]. Graph grammars are composed of production rules, each having
graphs in their left and right hand sides (LHS and RHS).
In addition to the syntax of the Traffic formalism modelled above, we still need to model its
semantics. One option would be to describe the operational semantics of the formalism (i.e.,
how vehicles move through the model) by constructing a simulator by hand or by building a
Graph Grammar model of the dynamics. We have chosen to map Traffic models onto Petri Net
[12] models instead. Not only does this define the meaning of the the Traffic formalism, but
it allows for the use of existing Petri Net analysis, optimization and simulation techniques and
tools.
Figure 3 depicts our Graph Grammar model of the mapping. The model starts with an initial

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

1 2
7

3 4

5 6

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

0

1 2

10
3 4

9

5 6

8

RHS

rule 2: Flow2PNTransition

CONDITION:
node = getMatched(LHS.nodeWithLabel(1))
return node.in_connections_ == []

ACTION:
node = RHS.nodeWithLabel(1)
node.capacityPNPlaceGenerated = True

<ANY>
<ANY>

1

LHS

rule1: RoadSection2PNPlace

CONDITION:
node = LHS.nodeWithLabel(1)
return not node.vehiclesPNPlaceGenerated

ACTION:
node = RHS.nodeWithLabel(1)
node.vehiclesPNPlaceGenerated = True

<COPIED>
<COPIED>

<SPECIFIED>
<SPECIFIED>

1

2

3

RHS

LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).num_vehicles

<ANY>
<ANY>

<ANY>
<ANY> <ANY>

<ANY>

4

1

5

2
3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED> <COPIED>

<COPIED>

4

1

6

2
3

RHS

rule 4: Capacity2PNPlaceLinks

<ANY>
<ANY> <ANY>

<ANY>
1 2

3

LHS <COPIED>
<COPIED>

2

RHS

rule 5: Capacity2PNPlaceCleanup

INITIAL ACTION:
for node in graph.listNodes["RoadSection"]:
 node.vehiclesPNPlaceGenerated=False

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>

1
7

2

6

5

3

4

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

<COPIED>

1

8

7

2

6

5

3

4

RHS

rule 6: CapacityConstraintOnPl2Tr

CONDITION:
cap_place = LHS.nodeWithLabel(6)
out_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for in_link in cap_place.in_connections_:
 for out_link in out_trans.out_connections_:
 if (in_link == out_link) and
 isinstance(in_link,tran2pl):
 capacity_transition_absent = False
 break
return capacity_transition_absent

rule 3: Capacity2PNPlace
<ANY>

<ANY>

1

LHS

<COPIED>
<COPIED> <SPECIFIED>

<SPECIFIED>
1 2

3

RHS LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).capacity

<ANY>
<ANY>

1

2LHS RHS

rule 9: RemoveRoadSection

rule 8: InitialCapacity

<COPIED>
<COPIED> <COPIED>

<SPECIFIED>
1

2

RHS

initial_num_vehicles = LHS.nodeWithLabel(1).num_vehicles
capacity_tokens = LHS.nodeWithLabel(2).tokens
return capacity_tokens-initial_num_vehicles

<ANY>
<ANY> <ANY>

<ANY>
1

3
2

LHS

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>
<ANY>

<ANY>

1

5

7

2

6

4

3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

1

5

7

2

6

4

8

3

RHS

rule 7: CapacityConstraintOnTr2Pl

CONDITION:
cap_place = LHS.nodeWithLabel(6)
in_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for out_link in cap_place.out_connections_:
 for in_link in in_trans.in_connections_:
 if (in_link == out_link) and
 isinstance(in_link, pl2tran):
 capacity_transition_absent = False
 break
return capacity_transition_absent

Figure 3: Traffic to Petri Net Transformation Rules

action followed by nine rules. Each rule has a LHS and a RHS as well as an optional pre-
condition and post-action. Nodes and connections in LHSs and RHSs are identified by means
of labels (numbers). If a number appears on both the LHS and the RHS of a rule, the node or
connection is retained when the rule is applied. If the number appears only on the LHS, the
node or connection is deleted when the rule is applied. Finally, if the number appears only
on the RHS, the node or connection is created when the rule is applied. Node and connection
attributes in LHSs must be provided with attribute values which will be compared with the node
and connection attributes of the host graph during the matching process. These attributes can be
set to

�
ANY � , or may have specific values. In the RHS, we can specify changed attribute values

for those nodes which also appear in the LHS. In AToM3, we can either copy the value of the
attributes of the LHS (this appears as

�
COPIED � in the figure), specify a new value, or associate

arbitrary Python code to compute the attribute value, possibly based on other nodes’ attributes.
Obviously, we must specify the attribute values of the newly created nodes or connections.
In the inital action of our model, all RoadSection nodes are marked as unvisited (to avoid infi-
nite application of rule 1). Rule 1 transforms Traffic RoadSection nodes into Petri Net Places,
with a link to the original RoadSection node. Rule 2 transforms Traffic FlowTo connections
between RoadSection nodes into Petri Net Transitions with appropriate Petri Net arcs. Rule
3 creates a Petri Net Place for each Traffic Capacity node, copying the capacity and name
attributes and keeping a link between both nodes. Rule 4 creates a direct link between a Petri
Net Capacity node and a Traffic RoadSection node it pertains to. The no longer needed link
between the Traffic Capacity node and the Traffic RoadSection node is removed. Rule 5 re-
moves the no longer needed Traffic Capacity nodes. Rules 6, 7 and 8 implement Petri Net
capacity constraints as described in [12]. Rules 6 and 7 add appropriate input and output arcs.
Rule 8 adjusts the number of tokens in Petri Net Capacity nodes to reflect the initial number
of vehicles in capacity constrained RoadSection nodes. Finally, rule 9 removes the no longer
needed Traffic RoadSection nodes as well as dangling edges.
Note how a GenericGraph formalism are used as a “helper” during graph transformations, in
particular from one formalism to another. GenericGraph edges are used to keep links between
Traffic and Petri Net nodes. This is cleaner than adding “helper” relationships to either of those
two formalisms or than using some of the relationships of those two formalisms out-of-context.
Applying our transformation to the Traffic system depiced in Figure 1 yields the Petri Net model
depicted in Figure 4.
This model may now be used to analyze and simulate the system. For analysis, we generate
the Coverabilty Graph (a Reachability Graph dealing with possibly infinite markings) shown
in Figure 5. The Coverability Graph allows for liveness analysis of the Traffic system. In
particular, as there are no nodes with outgoing edges in this graph, we conclude that deadlock
cannot occur.

5 Suggestions for Future Research
It is important to model not only the visual syntax of formalisms, but also the way in which
a user will interact with models in those formalisms. This modelling of reactive behaviour of
domain-specific graphical user interfaces needs to (i) be intuitive, (ii) support analysis, simu-
lation, and above all code synthesis and (iii) be seemlessly integrated and consistent with the
meta-model and with possible modelled model transformations. Some early experience with
Statechart models of the reactive behaviour of AToM3 has been promising. As shown in Fig-
ure 6 AToM3’s user interface is modelled, simulated and synthesized entirely using DCharts [8].
In our experience, the Statechart/DChart formalisms are not modular enough for our purposes
and the link with declarative (layout as well as semantic) constraints is still unclear.
Transformations need to be possible to/from and between textual model descriptions. For this,

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1

Figure 4: The Generated Petri Net Model

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr

Figure 5: The Generated Coverability Graph

Figure 6: The GUI’s reactive behaviour modelled and in action

graph grammars are not very suitable. Furthermore, if graph grammars are used, it may some-
times be more appropriate to describe patterns in a textual way, as in GReAT [2]. Apart from
this fact, a textual syntax is most certainly needed for a target-code-independent action lan-
guage. Due to our involvement in the design of the Modelica language (www.modelica.org),
we are currently experimenting with Modelica to make it suitable for multi-formalism and
meta-modelling.
Models should be used for (i) analysis and verification, (ii) simulation, and (iii) synthesis (by
appropriate transformations). Some of these transformations could become “standard” such
as the mapping onto Petri nets with subsequent analyses. Rather counter-intuitively, it is ex-
pected that increasing the number of (re-useable) transformations will increase the potential for
optimizations, thus increasing the quality of the final product.

References
[1] Special issue on domain-specific modeling with visual languages. Journal of Visual Lan-

guages and Computing, 15(3-4):207–330, June - August 2004. Edited by J. Gray, M.
Rossi, and J.-P. Tolvanen.

[2] A. Agrawal, G. Karsai, and F. Shi. Graph transformations on domain-specific models.
Technical Report ISIS-03-403, Vanderbilt University, Institute for Software Integrated
Systems, November 2003.

[3] Juan de Lara and Hans Vangheluwe. AToM3: A tool for multi-formalism and meta-
modelling. In European Joint Conference on Theory And Practice of Software (ETAPS),
Fundamental Approaches to Software Engineering (FASE), Lecture Notes in Computer
Science 2306, pages 174 – 188. Springer-Verlag, April 2002. Grenoble, France.

[4] Juan de Lara and Hans Vangheluwe. Using AToM3 as a Meta-CASE tool. In 4th Inter-
national Conference on Enterprise Information Systems (ICEIS), pages 642 – 649, April
2002. Ciudad Real, Spain.

[5] Juan de Lara and Hans Vangheluwe. Defining visual notations and their manipulation
through meta-modelling and graph transformation. Journal of Visual Languages and
Computing, 15(3 - 4):309–330, June - August 2004. Special Issue on Domain-Specific
Modeling with Visual Languages.

[6] Juan de Lara Jaramillo, Hans Vangheluwe, and Manuel Alfonseca Moreno. Using meta-
modelling and graph grammars to create modelling environments. In Paolo Bottoni and
Mark Minas, editors, Electronic Notes in Theoretical Computer Science, volume 72. El-
sevier, February 2003. 15 pages. www.elsevier.nl/locate/entcs/volume72.html.

[7] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg. Handbook of Graph Grammars
and Computing by Graph Transformation. Vol. 2: Applications, Languages, and Tools.
World Scientific, 1999.

[8] Thomas Huining Feng. Dcharts, a formalism for modeling and simulation based design
of reactive software systems. M.Sc. dissertation, School of Computer Science, McGill
University, February 2004.

[9] Rony G. Flatscher. Metamodeling in EIA/CDIF meta-metamodel and metamodels. ACM
Transactions on Modeling and Computer Simulation, 12(4), 2002.

[10] Gabor Karsai, Greg Nordstrom, Akos Ledeczi, and Janos Sztipanovits. Specifying Graph-
ical Modeling Systems Using Constraint-based Metamodels. In Proceedings of the IEEE
International Symposium on Computer Aided Control System Design, pages 89–94, An-
chorage, Alaska, September 2000.

[11] S. Kelly and J.-P. Tolvanen. Visual domain-specific modeling: Benefits and experi-
ences of using metacase tools. In J. Bezivin and J. Ernst, editors, Proceedings of
the International workshop on Model Engineering, ECOOP 2000, page 9 pp., 2000.
http://www.metamodel.com/IWME00/.

[12] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[13] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 1. World Scientific, 1997.

