

Defining Domain-Specific Modeling Languages:
Collected Experiences

Janne Luoma, Steven Kelly, Juha-Pekka Tolvanen

MetaCase
Ylistönmäentie 31

FI-40500 Jyväskylä, Finland
{janne | stevek | jpt}@metacase.com

http://www.metacase.com

Abstract
Domain-Specific Modeling offers a language-based approach to raise the
level of abstraction in order to speed up development work and decrease
the number of errors. In this paper we identify approaches that are applied
for defining languages. This categorization is based on analyzing over 20
industrial cases of DSM language definition.

1 Introduction
Domain-Specific Modeling (DSM) can raise the level of abstraction beyond coding by
specifying programs directly using domain concepts. The final products can then be
generated from these high-level specifications. This automation is possible because
the modeling language and generator only need to fit the requirements of one domain,
often in only one company (Pohjonen & Kelly 2002, Tolvanen 2004).

This paper aims to facilitate discussion on successful DSM language creation
principles. Although there exists a body of work done on language development, most
of this deals only with textual languages, and concentrates on their compilers rather
than the languages. In general, such research has only looked at the initial creation of
the languages (e.g. Cleaveland 1988, Deursen van & Klint 1988). Fewer studies (e.g.
Rossi et al. 2004, Sprinkle & Karsai 2004) have investigated the actual process of
language creation, or of refinement and evolution of languages that are already in use.
Moreover, the typical focus of a DSM language, providing models as input for
generators, gives a special perspective to modeling language creation.

This paper identifies and categorizes approaches used for defining DSM
languages. It is based on an analysis of cases that created DSM languages to automate
model-based software development. Although all the DSM languages studied were
implemented as metamodels and were not tied to customizing an available language,
the approaches identified may also serve language creation that is based on extending
available metamodels or using profiles for more lightweight language definition work.

In the next section we describe the cases and how they were analyzed in more
detail. Section 3 describes the approaches identified by characterizing their main
focus and by giving a representative example1 of a DSM in that category. Sections 4
and 5 evaluate the categorization and summarize the experiences gathered.

2 About the studied DSM cases
This study is based on data gathered from over 20 cases of DSM creation. The cases
were chosen to cover different domains and modeling: from insurance products to

1 Due to confidentiality of industrial DSM cases, not all cases can be illustrated in detail.

microcontroller-based voice systems. Table 1 shows the cases, their problem domains
and solution domains. The fourth column refers to the DSM creation approaches,
which are discussed in more detail in Section 3. The cases are sorted by the fourth
column for the benefit of the reader.

Table 1: DSM cases by domain and generation target

Case
ID

Problem domain Solution domain/
generation target

Creation
approach(es)

1 Telecom services Configuration scripts 1
2 Insurance products J2EE 1
3 Business processes Rule engine language 1
4 Industrial automation 3 GL 1, (2)
5 Platform installation XML 1, (2)
6 Medical device configuration XML 1, (2)
7 Machine control 3 GL 1, 2
8 Call processing CPL 2, (1)
9 Geographic Information

System
3 GL, propriety rule
language, data structures

2

10 SIM card profiles Configuration scripts and
parameters

2

11 Phone switch services CPL, Voice XML, 3 GL 2, (3)
12 eCommerce marketplaces J2EE, XML 2, (3)
13 SIM card applications 3 GL 3
14 Applications in microcontroller 8-bit assembler 3
15 Household appliance features 3 GL 3
16 Smartphone UI applications Scripting language 3
17 ERP configuration 3 GL 3, 4
18 ERP configuration 3 GL 3, 4
19 Handheld device applications 3 GL 3, 4
20 Phone UI applications C 4, (3)
21 Phone UI applications C++ 4, (3)
22 Phone UI applications C 4, (3)
23 Phone UI applications C++ 4, (3)

All the cases applied model-based development by creating models that then formed
the input for code generation. Thus, DSM language creation was not only applying
modeling to get a better understanding, support communication or have
documentation, but for automating development with domain-specific generators.
Actually, in most of the cases the generators aim to provide full code from the
modelers’ perspective. This means that no changes to the generated code were
expected to be needed. In all the cases, the target platform (i.e. available components
and generated output language) was already chosen before the DSM language creation
started. With the exception of cases that generated XML, the final detailed structure
and composition of the generated output was left open and in most cases new domain
framework code was created. A domain framework provides a well-defined set of
services for the generated code to interface to.

Many of these domains, and hence also their respective DSM languages, can be
characterized as rather stable; some however were undergoing more frequent changes.
Some languages have been used now for several years whereas some have only just
been created. None of the languages were rebuilt during the DSM definition process,
but rather maintained by updating the available language specification. All the
language definitions were also purely metamodel-based: i.e. complete freedom was
available when identifying the foundation for the language. In other words, none of
the cases started language definition by extending UML concepts via profiles etc. The
largest DSM languages have several individual modeling languages and over 580
language constructs, whereas the smallest are based on a single modeling language
and less than 50 constructs. As a comparison, UML has 286 constructs according to
the same meta-metamodel as the one applied in the analyzed cases.

The data on DSM development (also know as method construction rationale,
Rossi et al. 2004) was gathered from interviews and discussions, mostly with the
consultants or in-house developers who created the DSM languages, but also with
domain engineers and those responsible for the solution architecture and tool support.
All the languages were implemented with the same tool (MetaEdit+, MetaCase 2004)
and access to the language definitions (metamodels) was available for content analysis
(Patton 1990) while analyzing the cases.

3 DSM definition approach categorization
Analysis of the metamodels revealed that the languages differed greatly with regard to
their concepts, rules and underlying computational model (see samples in Figures 1, 2
and 3). The collected data indicates that the driving factor for language construct
identification was based on at least four approaches:

1. Domain expert’s or developer’s concepts
2. Generation output
3. Look and feel of the system built
4. Variability space

This list of approaches is not complete (being based on a rather limited set of cases),
nor are the approaches completely orthogonal to each other. Actually, many of the
cases applied more than one construct identification approach. In the following
subsections we describe these approaches in more detail and discuss how the
languages’ constructs were identified and defined. We also attempt to describe the
process of language creation (identification, definition, validation, testing), and
discuss the need for a domain framework to ease the task of code generation.

3.1 Domain expert’s or developer’s concepts
One class of DSM definitions seemed to be based on concepts applied by domain
experts and developers of the models (cases 1–8 as listed in Table 1). Figure 1 shows
a sample DSM of this class (case 2). All the modeling concepts are related to
insurance products: an insurance expert draws models like this to define different
insurance products, and then the generators produce the required insurance data and
code for a J2EE website.

This type of language raises the level of abstraction far beyond programming
concepts. Because of this, the generated output could easily be changed to some other
implementation language. Similarly, users of these languages did not need to have a

software development background, although in most cases they had. The
computational models behind these languages were fairly simple, and consistent over
the cases analyzed: all were based on describing static structures or various kind of
flows, their conditions and order. Code was usually produced by listing each model
instance separately, along with its properties and relationships to other model
elements. The code generation was guided by the relationship types, e.g. code for
composite structures and flow-based ordering was generated differently.

Languages based on domain experts’ concepts were considered easy to define: for
an expert to exist, the domain must already have established semantics. Many of the
modeling concepts could be derived directly from the domain model, as could some
constraints. Constraints specifically related to modeling often needed to be refined, or
even created from scratch, together with the domain experts. This process was rather
easy as testing of the language could easily be carried out by the domain experts
themselves. If the modelers were not themselves software developers, language
visualization (e.g. the visual appearance of the notation), ease of use and user-
friendliness were emphasized.

Figure 1: DSM example: modeling insurance products.

3.2 Generation output
One class of DSM definitions was driven by the required code structure: modeling
languages concepts were derived in a straightforward way from the code constructs
(cases 7–12). An example of this kind of DSM is the Call Processing Language (CPL)
(Lennox et al. 2004), used to describe and control Internet telephony services (cases 8
and 11). The required XML output forms a structure and concepts for the modeling
language (see Figure 2).

Figure 2: DSM example: Call Processing

DSM concepts to describe static parts like parameters and data structures, or the core
elements and attributes in CPL and XML above, were quick and easy to define. The
real difficulty was in finding appropriate concepts for modeling the behavioral parts
and logic based on domain rules. This was achieved when the underlying platform
provided services the models could be mapped to. This is often called analyzing the
variability space (see Section 3.4). Once defined, the services and modules of the
platform could even be applied directly as modeling concepts, or by having general
interface concepts that allowed the modeler to choose or name the required platform
service.

If a domain could not be defined or an existing architecture was not available,
languages tended to use modeling only for the general static structures. The rest was
done with textual specifications – often directly with programming concepts that do
not provide domain-specific support.

A similar class of modeling languages are those originating from coding concepts,
such as UML, schema design languages and various code visualization add-ons in
IDE environments. Having models and code at substantially the same level of
abstraction typically also raises the need for reverse engineering. This is similar to a
class of tools, Microsoft’s Whitehorse, Rational’s XDE, Borland’s TogetherJ, that aim
to offer transparency between the use of models and textual specifications.

Such a close mapping to programming concepts did not raise the level of
abstraction much, and offered only minor productivity improvements. Typical
benefits were better guidance for the design and early error prevention or detection.
Using the CPL/XML as an example, designs could be considered valid and well-
formed already at the design stage. In that way it was far more difficult to design

Internet telephone services that were erroneous or internally inconsistent: something
that was all too easy in hand-written CPL/XML.

3.3 Look and feel of the system built
Products whose design can be understood by seeing, touching or by hearing often led
to languages that applied end-user product concepts as modeling constructs (cases 11–
23). Figure 3 gives an example of a language whose concepts are largely based on the
widgets that Series60 and Symbian-based smartphones offer for UI application
development (case 16). The behavioral logic of the application is also described
mostly based on the widgets’ behavior and the actions provided by the actual product.
The generator produces each widget and code calling the services of the phone
platform. Some framework code was created for dispatching and for multi-view
management (different tabs in the pane). By using domain-specific information, much
modeling work could be saved: for instance, the normal behavior of the Cancel key is
to return to the previous widget. Relationships for Cancel transitions thus need not
normally be drawn, but can be automatically generated; only where Cancel behaves
differently need an explicit relationship be drawn.

Figure 3: DSM example: Smartphone UI applications

Identification, definition and testing of the language constructs were considered easier
in this approach than any other language construct identification approach. Therefore,
language creation could often be carried out by external consultants with only a little
help from domain experts. Although the language definition was relatively
straightforward, the main challenges seemed to be in relating other types of modeling
elements and constraints to those constructs originating from the look and feel. If the
look and feel constructs were sufficiently rich to also cover functionality, the level of
abstraction of modeling was raised substantially beyond programming.

In many cases, the look and feel based cases had an existing framework, product
platform or API, which formed a reasonably solid foundation for the key modeling
language concepts. The APIs varied in their levels, from very low-level APIs near the
code, to very abstract operations and commands. The simpler generators usually
produced the code as a function per widget or similar state, with the end of the
function calling the next function based on user input. Tail recursion was used to
reduce stack depth where necessary. More complex generators produced state-based
code, either in-line or as state transition tables. None of the languages based on look
and feel required frequent reverse engineering, but some called for importing libraries
as model elements. Usually only interfaces were required for these libraries, but in at
least one case components with their implementation (i.e. whitebox) were needed.
Generators targeting other implementation languages were not defined, although that
was considered possible to achieve.

3.4 Setting the variability space
The final language definition approach was based on expressing variability (cases 17–
23). Such cases were typical in product families, where languages were applied for
variant design. Typically, the variability space was captured in the language concepts,
and the modelers’ role was to concentrate on the issues which differ between the
products. All the cases that were based on describing variability had a platform that
provided the common services the generated code interfaced with. This interfacing
was typically based on calling the services of the platform, but there were also cases
where generators produced the component code.

Languages describing variability were among the most difficult DSMs to create.
The main reason was the difficulty to predict the future variants. This called for
flexible language definitions that were possible to extend once new kinds of variations
arose. Languages for pure static variability (often for configuration) were found
relatively easy to create, however. The difficulty lay in behavioral variability and
coming up with a language that supported building almost any new feature based on
the common services of the platform. The success of the language creation was
dependent on the product expert’s knowledge, vision to predict the future, and insight
to lay down a common product architecture. Therefore, the role of external
consultants to support DSM creation was often smaller than with other approaches. In
the best cases, though, the external consultant’s experience of DSMs and generators
complemented the expert’s experience in the domain and its code. This normally
required a consultant who was himself an experienced software developer (although
not in that domain), and an expert who was not too bound to a low-level view of code.

In these cases language constructs were explored using domain analysis to
identify commonalities and variabilities among the products to be built using model-
based code generators. For example, Weiss and Lai (1999) present a method to detect
commonality and variability of both static and dynamic nature. Each variation point
will be specified with variation parameters. By setting parameters for variation it

offers a clear starting point for language concepts, like proposing data types and their
variation space as well as constraints for combining variability. Feature modeling
(Kyo et al. 1990) was not applied to explore variability as it was found to operate at a
level too general to identify DSM concepts. Feature models do not capture the
dependencies and constraints that are required to define modeling constructs. Among
the studied cases, product architecture served better to find product concepts and their
interrelations.

A product family platform and its supporting framework also have a notable
influence on the modeling language concepts and constraints. Commonalities were
usually hidden into the generator or framework in addition to complex issues which
can be solved in an automated generator. In many cases there were several different
computational models used to support all the required views of the systems. For
example, in embedded product families, it was common to follow the state machines
with domain specific extensions to best describe the system’s behavior and
interactions.

The level to which abstraction was raised was dependent on the nature of
variability. As would be expected, cases where the variability could be predicted
reasonably well showed higher levels of abstraction than those where future
variability could not be pinned down. A common solution for these latter cases was to
make the modeling language and generators easy to extend, allowing the level of
abstraction to be raised substantially now, and making it possible to maintain that
level in the future.

4 Evaluation of the Categorization
After having categorized the cases according to which of the four approaches were
used, we noticed that each case had used only one or two approaches. Further, where
there were two approaches, only certain pairs of approaches seemed to occur. Of all
16 possible pairs made up of a primary approach and a secondary approach, only 5
were actually found in the data. This prompted us to re-order the categories into the
order now shown (previously generation output was last), so that each case used one
approach and its successor or predecessor.

Cases performed mainly by the customer mostly occur early in the list.
Conversely, those cases which had been performed by more experienced DSM
practitioners tended to come later in the list. The order of approaches thus probably
reflects an order of increasing DSM maturity.

Some cases were found to resemble others from the language point of view,
although the product domain and generated code were different (e.g. the cases of ERP
configuration and eCommerce marketplace).

Approach 1, domain expert’s concepts, seems to provide little insight. In some
cases it simply means that somebody else identified the concepts, and we thus lack the
information of which of the other approaches they used. In the three cases where the
customer was not mainly responsible for the concept identification, the DSM project
has not progressed beyond an initial proof of concept. These cases thus probably
reflect domains that are immature, and where the DSM consultants lacked previous
experience that would have enabled them to raise the maturity in that domain.

In approach 2, generation output, there were significant differences between those
cases whose generation output was itself an established domain-specific language, and
those where the output was a generic language or an ad hoc or format such as a
configuration file. Those cases worked best where the output was an established
domain-specific language, because the domain was more mature and the company in

question already had a mature implementation framework, either their own or from a
third party. In both CPL cases, the companies wanted their own additions to the
languages, further improving the domain specificity.

When the output is in a generic programming language, it would often be better
apply an approach other than generation output, to truly raise the level of abstraction.
When the output is to an immature format, it would often be better to analyze the
domain further to improve its understanding and the output format, rather than build a
direct mapping to the existing shaky foundation.

Approach 3, look and feel, can be regarded as the first of the four approaches that
consistently yields true DSM solutions. It is thus a valid approach to apply in new
DSM projects, whenever the end product makes it possible. It was also the most
commonly applied approach, found in 13 out of 23 cases.

Approach 4, variability space, was only found in combination with approach 3.
The cases where it was the primary approach, 20–23, were all in the domain of phone
UI applications, generating C or C++ (case 16 was a simpler domain, a subset of
these). These cases are certainly among the most complex, and this partly accounts for
the similar solutions. A second major factor is that experience with previous similar
cases had provided a proven kind of solution for this domain. Whilst each language
was created from scratch, the knowledge of previous cases from this domain certainly
influenced the way the cases were approached. The resulting DSM languages and in
particular generators differed substantially, reflecting the different needs of the
domains, customers and frameworks.

The use of the variability space approach in the radically different domain of ERP
configuration (17 & 18) shows that this approach is not restricted to state-based
embedded UIs. Perhaps the most likely explanation for this clustering of cases is that
this approach requires the most experience from the language creators, and yet also
offers the most power. In particular, the combination of the almost naïve end-user
view of the look and feel approach with the deep internal understanding of the domain
required by the variability space approach seems to yield the best solutions,
particularly in the most complex cases. When used together, the look and feel
approach tended to identify the basic concepts, and the variability space approach
helped define relationships and what properties or attributes each concept should
have.

5 Conclusion
In this paper we have discussed approaches to identifying concepts for DSM
languages, based on experiences collected from over 20 real-world cases. The cases
show that there is no single way to build DSM languages: more than one language
creation approach was applied in the majority of cases. In the cases studied, we
identified four different approaches used by the domain expert, expert developer or
DSM consultant.

Of the four approaches in our categorization, the first relied on the domain
expert’s intuition or previous analysis to identify concepts. This approach is essential
in that it emphasizes the role of the expert, but forms a weak point of the
categorization in that the experts themselves must normally have applied one of the
other approaches. The second approach identifies concepts from the required
generation output, and can only be recommended where that output is already a
domain-specific language. The third and fourth approaches, end product look and feel
and variability space, seem to be the best overall, although not applicable in every
case. Using them together was particularly effective.

Defining a language for development work is often claimed to be a difficult task:
this may certainly be true if you want to build a language for everyone. The task
seems to become considerably easier when the language need only work for one
problem domain in one company. According to the cases analyzed the main
difficulties are found in behavioral aspects and in predicting future variability. Almost
all cases with both these difficulties required experienced DSM consultants, and all
used more than one approach to identify concepts.

In all cases, DSM had a clear productivity influence due to its higher level of
abstraction: it required less modeling work, which could often be carried out by
personnel with little or no programming experience. The increase in productivity is
not surprising, considering that research shows the best programmers consistently
outperform average programmers by up to an order of magnitude. DSM embeds the
domain knowledge and code skill of the expert developer into a tool, enabling all
developers to achieve higher levels of productivity.

This paper aims to facilitate discussions on DSM by summarizing and analyzing
our experiences of how DSM language creators identify and define modeling
constructs. More research work is needed to better understand the DSM creation
process, and to disseminate the skills to a wider audience. Particularly welcome would
be empirical studies that cover more cases from various domains, and using different
metamodeling facilities. As DSM use grows, research methods other than field and
case studies would also be welcome, for example surveys and experiments.

References
Cleaveland, J. C., (1988) Building application generators, IEEE Software, July.
Deursen van, A., Klint, P., (1988) Little languages: Little maintenance? Journal of

Software Maintenance, 10:75-92.
Kyo, C., K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, (1990)

Feature - Oriented Domain Analysis (FODA) Feasibility Study, Technical
report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University.

Lennox, J., et al., (2004) CPL: A Language for User Control of Internet Telephony
Services. Internet Engineering Task Force, IPTEL WG, April.

MetaCase, (2004) MetaEdit+ Method Workbench 4.0 User’s Guide,
www.metacase.com

Nokia (2003) Series 60 SDK documentation, version 2.0, 2 (www.forum.nokia.com/)
Patton, M., (1990) Qualitative Evaluation and Research Methods, Newbury Park,

Sage, 2nd edition.
Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P., (2004) Documenting Decisions

in Method Engineering by Method Rationale, Journal of AIS, accepted,
September 2004 (to appear).

Pohjonen, R., Kelly, S., (2002) Domain-Specific Modeling, Dr. Dobb’s Journal,
August.

Sprinkle, J., Karsai, G., (2004) A domain-specific visual language for domain model
evolution, Journal of Visual Languages and Computing, Vol 15 (3-4), Elsevier.

Tolvanen, J.-P., (2004) Domain-Specific Modeling (in German: domänenspezifische
Modellierung) ObjektSpektrum, 4, July/August.

D. Weiss, C.T.R. Lai, (1999) Software Product-line Engineering, Addison Wesley
Longman.

