An eXecutable M etamodelling Facility for
Domain Specific Language Design
Tony Clark, Andy Evans, Paul Sammut, James Willans
Xactium Limited
andy.evans@xactium.com

Introduction

Domain specific language definition involves theplgation of metamodelling
technologies to rapidly generate and integrate sgoadly rich languages and tools
that target domain specific modelling requiremefitse aim is to provide developers
with modelling abstractions appropriate to theivelepment needs, thus enabling
them to clearly focus on the problem domain inagoh from implementation details.

This article discusses limitations with the curretdndards that support language
definition (MOF, QVT, UML) and looks at a particulapproach to extending the
standards to support it. This approach is basedhenconstruction of a layered,
executable metamodelling framework called XMF tpabtvides semantically rich
metamodelling facilities for designing languageshisT architecture has been
implemented in a commercial tool, full details ofhieh can be found at:
www.xactium.com. A book on the subject of langudgeen development and
metamodelling can be also be found at this webf4jte

Finally, we argue that any approach to designing’'®$ust be all encompassing in
its ability to design languages in general.

The Role of Languages in Systems Development

Developers use a surprisingly varied collectionlariguages during the systems
development process. This includes high-level modelanguages that abstract away
from implementation specific details, to languagbat are based on specific
implementation technologies. Many of these are ggymirpose languages, which
provide abstractions that are applicable acrosside wariety of domains. Of
particular relevance here, are domain specificdagg (DSL’s). DSL'’s are languages
that provide a highly specialised set of domainceqis.

Languages typically support many different captédithat are an essential part of
the development process. These include:

* Execution: allows the model or program to be tested, rundepoyed.

* Analyss provides information of the properties of modatsl programs.

» Teding: support for both generating test cases and valglahem must be
provided.

» Visualisation: many languages have a graphical syntax, and suppst be
provided for this via the user interface to theglaage.

» Parsing: if a language has a textual syntax, a means kmeigirovided for
reading in expressions written in the language.

» Trandation: languages don't exist in isolation. They are tgtly connected
together whether it is done informally or automatic through code
generation or compilation.

» Integration: it is often useful to be able to integrate featufrom one model
or program into another, e.g. through the use ofigoration management.

The important point to make is the diversity of way which languages are used in
practice. Any language definition approach musekgressive enough to capture all
these aspects.

Features of Languages

Although there are many different types of langsagiere are some common
features that they all share. These must be umabest we are to develop a generic
approach to language definition. The primary fezduare:

Concrete Syntax

All languages provide a notation that facilitatbe presentation and construction of
models and programs in the language. This notagidkmown as its concrete syntax.
There are two main types of concrete syntax: téxamd visual. A textual syntax
enables models and programs to be described iruetsted textual form. A visual
syntax presents a model or program in a diagraroaidibrm. The advantage of a
textual syntax is that it is good at representiataid, while a visual syntax is good at
communicating structure.

Abstract Syntax

The abstract syntaaf a language describes the vocabulary of conqeqotgded by
the language and how they may be combined to creadkels or programs. It consists
of a definition of the concepts, the relationshipet exist between concepts and may
also include rules that say how the concepts magdmly combined. It is important
to emphasize that a language’s abstract syntaxdispiendent of its concrete syntax
and semantics. Abstract syntax deals solely wighfolhm and structure of concepts in
a language without any consideration given to thegsentation or meaning.

Semantics

The semantics of a language describes what modetsograms in the language
actually mean and do. In the context of programmiggguages, an execution
semantics is essential in order to run programgemrin the language. Semantics are
also important in the context of modeling languag&&hout semantics, modeling
languages like UML offer little more than a coliect of notations and their
usefulness is reduced.

Language Definition and Metamodels

The need to capture languages independently iatboph independent format is not

new. One of the most widely known standards fas fhirpose is the MOF (the Meta
Object Facility) [3]. The purpose of the MOF isdefine a common way of capturing

meta-data. Languages expressed in terms of MOBeaalated to each other simply
because they are defined in the same way. For d&aihpne wants to move from a

model written in UML to a model that describes @aJarogram, the process is greatly
eased because they are represented in the same way.

The way that MOF describes languages is througgamodels. Typically, a
metamodel is a model of the concepts that are geovby the standard. In this case of
UML, this might include such concepts as Classiildite, Operation, and so on.

Although the MOF is a good starting point for defoplanguages, it has a number of
limitations:

» It is not rich enough to capture semantic concéepts platform independent
way. For instance, the execution of a state machime business process
cannot be expressed in MOF. The tool designer nagstrt to implement these
aspects in an external implementation technologh s1$ Java.

* MOF does not provide a means of expressing the retmcsyntax of a
language, whether it is a textual or diagrammatggitax. Whilst MOF
models can be exported in terms of XML, this idiwiited use to modellers,
who require a more human readable form.

 MOF does not provide abstractions for capturing urgerfaces and tools in a
generic fashion. This means that either the langussgigner has little control
over the user interface of a tool that supportsldinguage, or these aspects
must be encoded in a platform specific way.

» There is currently no way of defining both uni-dtienal and synchronised
mappings between MOF models. These are essentidegoribe language
transformations and the synchronisation of languelgeents. Whilst the
QVT standard is aiming to address the issue ofialivectional language, the
need for a synchronised mapping language is paminiowrder to describe
synchronisation between language elements and admgeditors, user
interfaces, and so on.

An eXecutable Metamodelling Facility

While a simple meta-data approach to defining lagguis insufficient, what can be
done to address the issue? How can we rapidlyectbat rich modelling languages
that are required for language driven development?

What is required is a metamodelling environment thaufficiently rich to capture all
aspects of a language in a platform independent Mayeover, this language should
be self describing and self-supporting, thus makimpssible for any language to be
defined completely independently of external tedbgp

A central feature of such an environment is exdalitya— this must be built in from
the start in order to be able to capture the ojerat semantics of languages, and to
be able to define the semantics of the metamodelimguage itself. Without it,
language definitions become reliant on externallémgntation technologies in order
to define language semantics.

To support domain specific language definition, wpeopose the following
components of an executable metamodelling faqjity overview is shown in figure
1):

» Avirtual machine for executing metamodels. Itsgmse is to act as a platform
independent execution environment for languagendiefins.

* A small, precise, executable metamodelling langutg is bootstrapped
independently of any implementation technology.should support the
minimum language definition capabilities necessarybe self-supporting.
Thus includes a generic parsing language and diagmg language, a
compiler and interpreter, and a collection of cexecutable MOF modelling
action primitives. Such a language can be builttam of MOF with the
addition of appropriate executable primitives.

* A layered language definition architecture, in whimcreasingly richer
languages and development technologies are defineterms of more
primitive languages via operational definitions thieir semantics or via
compilation to more primitive concepts or extensionexisting concepts:
These will include:

o Definitions of richer metamodelling languages, sumh mapping
languages (QVT), Ul languages, constraint languagesting
languages and pattern languages.

o Definitions of general-purpose language primitivesuch as
components, aspects, patterns, etc, that can bbimedninto general
purpose modelling languages such as UML.

o Definitions of bespoke, domain specific languades &re built from
the above definitions.

» Support for the rapid deployment of metamodels warking tools. This
involves linking the Ul metamodels with appropriatgéser-interface
technology. An open source toolset like Eclipse GifitF can be used for this
purpose.

The aim is to build support from the ground up lemguage definition in a layered
fashion. Using the facility it is possible to ralyidimplement many different
modelling languages and associated tools in agufatindependent way. In other
words, the metamodel becomes a complete defindfotine language and tool that
supports it.

Rich
Development Uses/
Language Extends
External | R Ul Rich =
Ul » Definition Metamodelling Uses/
App Language Languages Extends
Core Executab | <
Metamodelling
Languages Runs on
Virtual ~
Machine

Figure 1: A Metamodel Facility that supports Langai®riven Development

Example

Imagine a domain specific inventory modelling laage that supports the
specification of inventory entities, including prads, services and resources within a
teleco environment. Specifications (expressed astraints) can be associated with
entities. Inventory entities can also have openatiand attributes, can be associated
with other inventory entities, and can specialisegentory entities of the same type.
The language is to be integrated into a componeaetiing language because of the
distributed nature of the telco environment. Furti@re, inventory models should be
deployable into Java and an associated user ingetfat permits creation/deletion of
instances of the models and the checking of sjgatifins.

In order to implement a development environment tfas scenario, a number of
different languages will be required, each withirtbevn metamodel definitions:

]
1 v |
XCore !
Metamodel - -'

A
— 74
XOCLand |[€= === - — e e e e e e e e e e e e e e e = = |
XBNF é ________________________ .

A 1
- ZF : Mapping

Component Language

Language Metamodel
Metamodel

v

|
\

_| ZF | \ —|
Inventory
Language c

Metamodel Mapping ||

AN] \\ 1

—] : ul Ul
An Mapping Metamodel

Inventory
Model
N
|
1
Instance of
Inventory
Model

o e e e e e e e e e o e

A
Java \ Java
Metamodel

Figure 2: Inventory Example

At the heart of the language definition is the X€anetamodel. This provides a
minimal collection of executable OO metamodellimyncepts that can be run on the
virtual machine. This is extended by XOCL, an exable version of OCL for

expressing constraints and actions, and XBNF, aergerparser language for
describing the concrete syntax of a language. &kieometamodels will extend and

instantiate (use) these metamodels (including th@or® metamodel, which
instantiates itself).

The mapping language metamodel is an example @hammetamodelling language
definition as it adds the functionality to expr@sappings between metamodels more
concisely than using the core metamodelling faeditlone.

The component language metamodel is an example wéha(general purpose)
development language definition, while the inveptianguage is an example of rich
(domain specific) development language definitiblmte that the domain specific
language is also dependent on a number of generpbge languages, such as OCL
for capturing specifications.

Finally, mappings are instances of the mapping dagg metamodel that relate
inventory models to Java and Ul metamodels.

The key point about the languages used in this pkam that they are all defined in
terms of a common executable metamodelling langudbes, models written in
these languages can leverage the executable semprivided by the metamodelling
language. For instance, the inventory languagefudlyaexecutable language: models
can be created, and instances can be created Hfias®a thodels. Thus, specifications
and standards can be verified for correctness eany in the lifecycle. Moreover, the
completeness of the inventory metamodel meansaticamplete implementation can
be generated in Java.

Development Experiences

We have been successful in implementing a tool fthit supports the architecture
described above. This tool is beginning to redimemany benefits of an executable
metamodelling architecture. These include being &blflexibly and quickly design
new modelling environments, which provide sematifiagch modelling capabilities.
A good example of this is a language for designisgr-interfaces, which is being
used to design new tools. This language has beeéelted such that it can be used to
generate new tools and interfaces to existingd¢ooiponents. However, the language
is fully bootstrapped, thus enabling its diagramoadtsyntax to be described in its
own representation.

Language Driven Development and DSL'’s

Many papers, for example [2] have proposed that alerspecific languages can
provide significant advantages to the systems dewveént process. DSLs aim to
provide targeted domain specific modelling concepwtsich can be used to accelerate
development. However, our experience tells us dieselopers need to access a wide
variety of languages and to be able to use thoggikges in flexible, integrated ways.
As shown in the inventory modelling language exampiere will often be the need
to utilise general purpose languages in DSL'’s dod versa.

Instead we must seek ways in which general purpodedomain specific languages
can be defined in a common metamodelling faciligttis rich enough to express all
aspects of the languages, including their semantit§4] we call this approach
language driven development, emphasising the fact that effective systems

development involves the use of multiple languag®s multiple language types to be
most effective.

Conclusion

Standards like MOF and research on DSL’s are dyiwis forward to a world in
which languages are managed in a unified and séra#dntrich ways. However, to
achieve this, we must understand better how gemeniguage driven development
techniques can be layered on top of existing metkafling approaches. As outlined
above, this can only occur if we raise the bar wébpect to what metamodels can
represent, and build a layered metamodelling achite that can support
semantically rich language definition capabilities.

In this paper, we have given an overview of a genexecutable metamodelling
facility called XMF that aims to realise this appoh. The XMF toolkit is an
implementation of XMF that is currently being usida variety of application
domains. Further details of XMF can be found inga§l at www.xactium.com.

References

[1] www.omg.org/mda

[2] Cook, S. Domain-Specific Modeling and Model ¥@mn Architecture, MDA
Journal, January 2004 (http://www.bptrends.comfpabibnfiles/01-
04%20COL%20Dom%20Spec%20Modeling%20Frankel-Cook.pdf

[3] www.omg.org/mof

[4] Clark et al. Applied Metamodelling: a Foundatifor Language Driven
Development. Available from www.xactium.com.

