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Abstract In this position paper we propose specifying plaif independent models using
a functional language with a view to specializimgl @ptimizing them using equational or
algebraic reasoning. We illustrate our idea witheékample of a very simple editor.

1. Introduction

Lately, as part of a general trend towards viewimgdels as I :
code”, there has been growing interest in convgmiodels from | Generic PIM u
one form to another. For example, MDA from the ONFB03] ﬂ 1. Specialize

views the implementation process as one of comgerd PIM
(Platform Independent Model) to a PSM (Platform e | Specialized PIM u

Model). We suggest that this conversion can be etkas a series J_L 5 Optimize
of steps, as illustrated in Figure 1. At the topneyic models are O
reusable components that provide well-defined bategc | “Design” PIM u

functionality. A typical application will be a calboration of
multiple domain models [MBO02]. In this paper weeéstigate the 3.Generate Code
use of pure functional languages to formalize thain models. PSM

The first transformation step specializes the gerféiM with
application domain knowledge. This is analogous tte Figurel: Transforminga
specialization of the Business Domain Layer to Buesiness PIM toa PSM
Section Layer described in [BGK+97]. The secong stansforms the specialized PIM into a
model that incorporates design decisions such esifgpdata structures, algorithms, design
patterns, architectural patterns, etc. The thieg & the traditional transformation to platform
specific code. The last two steps have their amaliogcompilers, which first perform
platform independent optimizations prior to invakibackend specific optimizers. This paper
discusses the first two steps. Also, the focusishe individual domain models rather than
the composite PIM. In order to map the complete RdMx PSM, we need to also map the
inter-domain links or bridges. How this is doneléscribed in [MB02].

2. Generic PIMs

Consider the modeling of a simple generic Editoiciwicontains one content model, a
clipboard and a selection. An actual Editor appiccacan be viewed as the composition of
several domain models as shown in the following @onthart (domain dependencies are
shown with a dotted arrow):
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In this paper we focus solely on the Editing domd&ihat is, we do not consider how
model elements are presented on the screen (theiNitne GUI domain) or the nature of the
connection between the Editing and GUI domains @batroller or bridge). A possible type



model for the generic Editing PIM is shown in Figu. The generic domain model,
analogous to a framework, defines the generic stosaof the Editing domain, which can be
customized by the subdomains. The editor represtmatsinformation being edited as a
ContentModel ~ which contains a collection ®fodelElements . ModelElement IS an interface
which must be supported by the specific types ofleh@lement being edited. The generic
editor model supports abstractions for at leastitheopy = andpaste commands. Our use
of the Command pattern [GKJV94] allows more comnsatwl be added by the domain
specific editors. The behavior of these operatierislly specified by the generic model, but
may also be specialized for particular applicatioAthough UML class diagrams are
typically interpreted as representing object class#h mutable state, we apply a different,
but equally legitimate, interpretation to the cksas declarative data abstractions. Because
our models are declarative (no side effects), tlthods always return a new object, as
indicated by the type declarations on the modeaiel

Editor «Standin» Command | x «interface»

Stream Receiver
+do ()

+id : String

+ save ( [in] m : Model ) : Stream % % W\ A
+ open ( [in] from : Stream ) : Editor

+ close ( [in] m : Model ) : Editor i
+cut () : Editor Cut Paste
+ paste ( [in] where : Location ) : Editor

+ copy ( ) : Editor

i i - model ContentModel
1 v selection 1 | + newElement ( [in] elementType : String ) : ModelElement

Selection + removeElement ( [in] element : ModelElement ) : ModelElement

1 |- clipboard /L7
+ addElement ( [in] elt : ModelElement ) z
+clear () : Selection ipboard
+ copyOf () : [ModelElement]

+addEI ent ( [in] elt : ModelElement ) : Clipboard

() : Clipboard
'mOdeIElemeh%odelEle@efg modelElements
«interface»
ModelElement
+ copyElement ( [in] s : Selection ) : ModelElement a
l

Figure2: UML Typediagram of Generic Editor Model

3. Why declarative models?

It has been suggested that avoiding side effecteesné easier to both develop correct
programs [BIO1] and subsequently comprehend theb®©HD3]. Unfortunately, it is not easy
to completely avoid side effects in most prograngrienguages such as Java, C++, etc and
still have an idiomatic efficient program. A reldtepproach to developing correct programs
known as Design by Contract [Me97] is to specify pinogram declaratively using a contract,
and then write the body of the specification impeedy. However, it is rare to find a model
that is fully specified using contracts. Part & ffroblem, we believe, is that after writing a
declarative contract, one still has to write thepémative model, which increases, not
decreases, the work effort. Functional languaglks &nother approach to this problem: A
functional program can be considered as a spetiditahat is both side-effect free and
executable. This gain can sometimes come at theofaficiency. Note, however, that in



MDA, the idea is to develop the PIM with correctaiesther than efficiency, being the main
criterion. Efficiency is addressed when transfogrihe PIM to a PSM. For this reason, we
believe that functional language may be highlyahlé for specifying the PIM. Functional
languages also have a long history of researchpirtgram transformation [Da82], [BW89].
We hope to leverage off some of this work for tfarmeation of the PIM to a PSM.

As a consequence of choosing a functional spetificalanguage, we can employ
algebraic or equational transforms. That is, theression (model) resulting from applying a
transform is algebraically equal to the expres¢iondel) to which it was applied. This very
useful property enables us to view proofs as dgoma and vice versa. An important
consequence is that the resulting synthesizedieaifianodel is correct by construction.
Furthermore, because the derivations are also ssgdein the same language, every
intermediate stage in the derivation is also advatogram, in contrast to imperative formal
methods such as Z [Ja96].

By choosing a specification language with powelémguage capabilities such as higher
order functions, lazy evaluation, type inferencattgrn matching, etc. we hope to make the
specification process itself more productive.

4. Declarative models in Haskell

Our first candidate specification language has beaskell. Haskell is a freely available
modern functional programming language [Ha]. In kédis types such aBsditor , Model and
others become abstract data types (ADTs) that @peued as modulésFor example, the
Editor module might be defined:

nodul e Editor (Editor, save, open, close, copy, cut, past e) where
i mport Selection

i mpor t ContentModel

i mport Clipboard

data ModelElement modelElementT => Editor modelElem entT =
Editor {
name :: String,
model :: ContentModel modelElementT,
selection :: Selection modelElementT,
clipboard :: Clipboard modelElementT

}

<... function definitions here ...>

The ADT is defined inside a module, denoted by kbgword module . It exports the
Editor type and the functionsave, open, close, copy, cut, paste . The import s
import all the dependent ADT modules, analogouslags imports in Java. Thita part
defines the fields or attributes of amitor type. There are 4 fieldsyame, model,
selection, and clipboard . The modelElementT is a type parameter, analogous to the
type parameter that is used when defining genaridava. The type parameter is qualified by
requiring any specific type that instantiates tiyget parameter to be in thédelElement
typeclass (The OO analogue of this is requiring the type supports thRodelElement
interface). Thus, interfaces in the model becone tglasses in Haskell. Types in the
ModelElement  typeclass must have the copyElement function ddfinThis is stated as
follows:

! There are object-oriented declarative languagels as O Haskell [OH] which provide direct
support for OO concepts such as methods and iaheet while still retaining all the feature of
functional programming. To simplify the presentatiove will just use ordinary Haskell in this paper.
The core of our idea is not affected.



cl ass ModelElement modelElementT wher e
copyElement :: modelElementT -> Selection -> model ElementT

Note that all of this code can be generated stifmighardly from the UML type diagram
of Figure 2.

As mentioned earlier, we ought to be able to use ftamework to build a simple text
editor and indeed we can do this by specializimggdneric model.

4.1. Step 1: Specializing the Generic Domain Model

By specializing the generic Editing domain modedwsh earlier to particular applications
(Step 1 in Fig. 1) we get domain specific editoFor example, in a logic circuit editor the
ModelElements becomeND OR NANDGates,Buses, andTi mers, there might be attributes
such asoutput , inputl , input2 , etc. For a state model editor the ModelElemeritshtrbe
State , Transiton , Action (perhaps subtyped antryAction  and ExitAction ), with
attributes likename, actions , guards , incoming , andoutgoing , substates , etc. A third
example might be a text editor, with its metamadewn in Figure 3. The metamodel shows
that Letter implements theModelElement interface. Also, the association between
Letter instances derives from the generic parent assatiatoetween model elements. (In
general, there can be any number of specializatibtige generic association).

«interface»
ModelElement

+ copyElement ( [in] s : Selection ) : ModelElement a

A 1
| Letter Z‘&

+ch : Char
+ fontName : String

+next|—

Figure 3: Specialization of generic model element for text

4.1.1. Specializing ModelElement

It is easy to see that the representation abogaiie unwieldy when it comes to text. We
are not making use of the linearity property ofttébhat is, aLetter is associated with at
most one otheretter (to its right). Put another way, if we were wrgia text editor from
scratch, it is unlikely that we would chose to esant the text as a graph of letter nodes.
Instead a more direct linear form, such as an ardist is likely to be used. However, the
rest of the model, which presumably provides fuoraiity and services that we desire, not to
mention all the other domains upon which this dondepends, expect to be able to interact
with the model via the given graph based interfatkis is achieved by defining an
implementation of the Letter ADT that is based wits| instead of graph nodes, and is an
example of what we mean by specialization of thmaio model.

nmodul e TextAsList (Letter, singleLetter, newlLetter, char,
fontName, next, set_next) wher e
i mpor t ObjectGraph

% The double use of the word domain here is someuffatrtunate. The Editing domain is not to be
confused with thapplicationdomains in which the editor will be specializedp®erate.



type Letter = [LetterData] -- actual letter is the first elt in the list
-- it is done this way to create the impression of a graph of nodes.
dat a LetterData = LetterData {

m_char::Char,

m_fontName::String,

} deriving Show

singleLetter :: Char -> String -> Letter
-- construct the actual letter and place it in a si ngleton list
singleLetter char fontname = [LetterData char fontn ame]

newLetter :: Char -> String -> Letter -> Letter
-- construct actual letter and prefix to the front of the existing text
newLetter ch fontName next = (LetterData ch fontNam e) : next

char = m_char . head

fontName = m_fontName . head

next = tail

set_next letterData:_ nextLetter = letterData:nextL etter

In this implementation of the ADT, aetter is defined as a list (sequence) of
LetterData  Objects. In order that we can access the “next2den the sequence, the actual
letter is just the first element in the ligtéd). The remainder of the list is il  of the list.

In order to get for example the char attribute, the corresponding accessor functioar, ,
first accesses theead of the list, and then applies the built+in char accessor. This is
written in Haskell using the function compositiopeoator !’. The fontName accessor is
defined similarly. (Note that function applicationHaskell is denoted by adjacency. That is,
f x isf applied tox.) Because there is no destructive update, theetsét(for example
set_next ) will just return a new instance. Two construatwathods are providedewLetter
andsingleLe tter

As an example of using the ADT interface, the madptesenting the string “cat” with ‘t’
in Times Roman and the rest in Arial font woulddomstructed with the following function
calls:

newLetter 'c' "Arial" (newLetter 'a' "Arial" (sing| elLetter 't' "Times"))

Note that in a functional language, the expresaimove is not merely a sequence of calls
to construct the string but a term that represtmsstring itself. We make use of this very
important property when carrying out proofs of eatness of some of our transforms.

4.1.2. Specializing Selection

As another example of specializing the generic domaodel, consider theopy method
in Editor. Figure 4 is a sequence diagram for tle¢hod.

A typical scenario for its usage is as follows: geuselects multiple diagram elements on
the screen (perhaps by stretching a bounding libg),GUI Controller (part of the MVC
pattern) repeatedly adds elements to the sele€tiingselection.  add(element) . When
done, the user might select the Copy menu commandeoCtl-C, or whatever other option
the GUI provides. At that point, the controllerlsalopy on the editor, which then asks the
selection for a copy of its elements (returned &stacp). Then the editor asks the clipboard
toclear itself in preparation for pasting elements taitdpaste is called next. Finally, the
selection is also asked dear itself.



| GUI | | :Editot | | -Selectiol | | :ModelElemer || ch:Clipboarc

copy()

copyTo(cb) ¢p = copyOf)

copyElement()*

»

—

clear() —»
paste(cp) ——

— clear() —p|

Figure 4: Sequence diagram

The goal of theopyTo method orselection  is to make a properly terminated copy of the
graph of model elements contained in the selecBgn'properly terminated” we mean that
the associations to the other graph elements dyeinciuded if those other elements are
themselves part of the selection. Below is (partlué definition of the Selection ADT:

nodul e Selection wher e

i mport Text -- or State or ...

t ype Selection modelElementT = [modelElementT]
newSelection =[]

addElement element selection = element;selection
toList = id

This is just defining theddElement “method” as the builtin Haskell operation to pxefi
an element to a list (}); TheList method is just the identity function.

Now consider the definition of thepyTo function. Given a definition of amement (like
for example the ones for State, or Letter above)can generate thepyTo function in the
following way: Each element in the source is cops@@r including its primitive attributes.
However, other elements to which the given elemerssociated are copied over only if
they also lie in the source. This ensures that théygiven subgraph is copied oter

A fully generic definition of copy requires the uskreflection or generic programming
[HJ03, RJO3]. A function uses reflection to acceseta-information: in this case
copyElement needs access to the type information about thegenbrmodel and its
associations. Generic programming provides exdbtty/ kind of polymorphism through the
definition of type-indexed values: a function tiatludes generic cases for different kinds of
types can be applied to any specific type. We heoteyet applied generic programming in
our implementation, but have instead created thaired specializedopyElement function
manually. The pattern for creation of the copy tiors is given below:

copyTo src dest = dest ++ copyOf src

copyOf selection = [copyElement elt selection
| elt <- stronglyRootedElemen tsOf selection]

® To simplify the presentation, we are assumingacl object graph. General graphs can be
handled using Haskell's graph library module



copyElement elt selection =
| et assoclVal = confirm (assocl elt) selection
assoc2Val = confirm (assoc? elt) selection

assocnVal = confirm (assocn elt) selection
in
elt{fassocl=assoclVal, assoc2=assoc2Val,...,assocn =assocnVal}

confirm (Just val) set =
i f (val "'elem’ set) t hen Just (copyElement val set) el se Nothing
confirm Nothing set = Nothing

copyTo appends a copy efc ontodest (using the list concatenation operator ++).

copyOf looks at each strongly rooted element (that Eneints in the object graph that do
not have any association links between them. Tlésrbowever serve as the point to
navigate to the rest of the connected componettiebbject graph) and calls copyElement
on that object.

copyElement looks at the object at the other end of each #$me link (assocl
assocn ) from the current object and copies it only ifistalso contained in the selection.
(Celem’ is the membership function for a list.Jyst andNothing are data constructors
belonging to theaybe monad. They permit an association to either betgmphold a value,
somewhat analogous to the usewf vs. an object reference in Java.

Based on this template, we see that in the caseewheModelElement is aLetter , the
specialization ofopyElement for a Letter would be:

copyElement letter selection =
| et nextVal = i f ((next letter) "elem” selection)
t hen copyElement (next letter) selection
el se Empty
i n letter{next=nextVal}

4.2. Proof of Correctness

Our ultimate goal is to be able to transform modedsequational derivation, rather than
proofs after the fact. However, by making use efphoperty that proofs and derivations in a
functional language are two side of the same owshope to discover useful methods of
derivation by studying their proofs. In order tooype the correctness of the above
implementation of a Letter ADT as a list we firgffitie an implementation of the ADT which
is a direct representation of the object graphnTwe induct over expressions such as the one
for “cat” shown earlier, and show their equivalemecehe two implementations. Space does
not permit us to go into the details here. Howeube proofs of this and the other
transformations in this paper, as well as the cetepéxecutable code for the example are
available from the authors. Having satisfied owsglof the relationship between the external
interface and internal representation, we can (wiine) use the more direct list based
representation when convenient.

Next we look at transformations that figure in giep of converting the PIM to a design
PIM, which was identified as thé%step in Figure 1.

4.3. Step 2: Optimizing the Specialized Domain Models

While the definition of selecion = above (and the contained method copy) by
straightforward specialization of the generic matt@s the job, it is not the most efficient. If
we know that a selection of letters in a text doentrmust be contiguous (as it is in most text
editors like Notepad or Word), there are some danspecific optimizations we can make.
Firstly, because the selection is contiguous, tbareonly be one strongly rooted component.
So when an element is added to the selection, wev khat it is linked to the first (or last)



element already in the selection. This permitsoausliminate a list of multiple components,
and represent the selection by just two piecesfoimation: namely, the first letter of the
selection and its length. The relevant code is shioglow:

dat a Selection = Selection{firstLetter::Letter, len::In t}
_JUNK = (singleLetter 'x' "x")
newSelection = Selection _JUNK 0
addElement selection letter =
selection{firstLetter = possUpdatedlstLetter, len= length letter}
wher e
possUpdated1stLetter =
i f (len selection)==0 --if it's a new selection
t hen letter
el se if (length letter) == (len selection) + 1
-- if the selection is being extended to the left
t hen letter
-- else extend to the right, don't change fir stLetter
el se (firstLetter selection)
newlLength = (len selection) + 1 -- always update the length!

This also means thadpyof has to deal with only one element:
copyTo selection dest = copyOf selection ++ dest
copyOf selection = [copyElement (firstLetter select ion) selection]

Secondly, instead of a test and copy of each elemethe chain, copyElement can just

perform a block copy of the required letters:
copyElement letter selection = take (length selecti on) letter

wheretake n  returns the firsh elements of a list. This kind of optimization tltabsses
encapsulation boundaries is difficult to do in enpérative setting because of possibility of
global state update. Note also that this optimizsfinition of the Selection ADT is
algebraically derivable from the original (giveretbonditions stated above, namely that the
ADT interface is restricted to singleton selectjons

Finally as a further example of domain specificiopation, if the text editor is a very
simple one in which individual characters canndtediin font (e.g. as in an editor like

Notepad), we can eliminate the font attribute catgdy and replaceetterData  in
t ype Letter = [LetterData]

by the character typ&far ). In Haskell,String = [Char] , SO we end up with
type Letter = String

Since we no longer have position information, weuldoof course revert back to the
original definition ofsSelection as a list. Again it is possible to algebraicallgride this
transformation.

5. Future Work

The example presented in this paper was intendpdotade a flavor of the approach we
are investigating. Though the example is rootedomething “real world”, we have not
addressed issues of scale and usage. For exampigformations of the type we have shown
will need to be carried out many times in the psscef mapping to an implementation. In
order to capture design patterns as transformatiasssuggested by Tokuda and Batory
[TB95], we would need to be able to “chunk up” sevelerivation steps into one. This is
where we think good proof assistants will come seful. We would also like to be able to
synthesize solutions rather than attempting tovdetiem after the fact.

Good tool support to carry out transformations arahage libraries of transformations is
going to be essential. We plan to look at toolthsag MAG [MS] and XT [JVVO01] from the
program transformation world.



We would also like to investigate “fusion” languagsuch as Scala [OAC04] and O
Haskell [No99] that provide support for OO concegish as classes and inheritance within a
functional programming paradigm. This would make #osmoother conversion from OO
models (defined for example in a declarative UMbset) to the specification language. We
hope to be able to use one of the model transfawm#&bols such as GMT[BEWO3] for this
purpose.

6. Related Work

Our work shares the same goals as much of the wmdhe fields of domain modeling and
of MDA. The MIC group at Vanderbilt has been vergtize in the area of model
transformation and aspect weaving. For example, L}®8&] uses graph grammars to
transform domain models. However, their emphasmiiearily on structural transformation.
We believe that transforming behavior is at leashgortant as transforming structure. Also,
they do not discuss how to prove or derive th@ngformations. Gray et.al. [GZL+04] apply
transformation rules to legacy code using the DM@&kit from Semantic Designs [SD].
However, their goal is reverse engineering rathan forward synthesis.

The primary difference is in our use of declarativedels, and of algebraic transforms on
those models. Also, to the best of our knowledbere has not been extensive work in the
MDA arena on specializing generic models.

Functional programming has a long history of wankprogram transformation [Da82].
Almost every book on functional programming hashapter or two on program synthesis
[BW89], [Th96]. But, despite the fact that transf@ations have been studied quite
extensively in functional programming, much of #itéention has been focused on reducing
algorithmic complexity and not on structural or rabttansformation. We want to leverage
such work towards solving a slightly different piexi.

There is also an extensive body of work in algebspecification [FJ92], particularly
dealing with proofs of ADT implementation. Howevelgebraic specifications are not in
general executable. We believe that executabiStyery important for the purposes of
validation.
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