
 

Abstract— We detail the syntax and semantics of ISA_ML, a visual modeling language 
for describing Instruction Set Achitectures of microprocessors, and an accompanying 
tool that takes a description in the language and generates decoders from it in the form 
of a disassembler and a micro-architectural trace interfacer. The language and tool were 
built using the Generic Modeling Environment (GME), and leverage the concepts of 
meta-modeling to increase productivity and to provide extensive error checking to the 
modeler. Using this tool, we were able to construct a model of significant subsets of the 
MIPS, ARM, and PowerPC instruction sets each in 8 hours or less. This language can 
be retargeted for other purposes, such as generating synthesizable instruction decoders.  
 
Index Terms— Computer Architecture, Design Automation, Visual Languages, 
Microprocessors 

I. INTRODUCTION 
Software is a growing concern in embedded systems design because of the flexibility 
that software implementations of complex functions offer and because of the stringent 
constraints placed on timing, memory occupation and quality that they must satisfy. To 
verify software intensive designs, it is important to accurately model the execution time 
of the processor(s) in the system. A microprocessor consists of the Instruction Set 
Architecture (ISA) used to program it, and the underlying microarchitectural 
implementation of the ISA. For a given ISA (e.g. ARM, MIPS, x86) there are typically 
a wide variety of microarchitectural implementations with varying degrees of 
performance (e.g. latency, clock speed, power, area). Designers must either obtain an 
accurate model from the processor vendor, or construct the model themselves. A less 
desirable alternative is using a functional Instruction Set Simulator (ISS), which only 
provides feedback on the number of instructions executed, but execution time can only 
be inferred in an approximate way. In either case, design space exploration at the micro-
architectural level is difficult.  

We have developed a methodology and micro-architectural models [11] that 
interface with functional models to allow for exploration within the Metropolis system-
level design framework [4] using formal models of computation to simplify the 
modeling process. Still, targeting a different instruction set requires several steps. First, 
the ISS must be modified to output the trace of instructions that it executes. Next, a 
decoder must be built in order to translate traces into objects that the micro-architectural 
model can use. Finally, the micro-architectural model is configured to represent the 
chosen processor.  

Our work helps automate the second step of this process by generating the decoding 
code from a representation described in the visual language ISA_ML (An ISA Modeling 
Language). This is the most difficult part of the interfacing process because each 
instruction type must be interfaced to the micro-architectural model, and it is often hard 
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to reuse code from the ISS to do this. ISA_ML was developed in the GME meta-
modeling framework [1]. ISA_ML is a domain specific modeling language for rapidly 
constructing descriptions of the encodings of Instruction Set Architectures (ISA’s) in an 
intuitive manner consistent with how such ISA’s are typically specified in their 
manuals. To accompany the language, we developed a tool that synthesizes disassembly 
code and a trace-interface for our micro-architectural models. Furthermore, the tool 
provides extensive static and dynamic error checking for models.  

A. Meta-modeling and Model Integrated Computing 
Meta-modeling is a term that implies modeling at a higher level of abstraction, but its 
precise meaning depends on the context in which it is used. In Metropolis, the meta-
model is based on a precise and flexible semantics that can be used to model a wide 
variety of models of computation. The type of meta-modeling that this paper refers to is 
a tool for building domain specific modeling environments.  

The tool adopted here is GME (the Generic Modeling Environment)[1]. It uses the 
formalisms of UML (the unified modeling language) and OCL (the Object Constraint 
Language) to construct domain specific modeling environments [9]. GME follows the 
Model-Integrated Computing [2] paradigm that allows the user to construct domain 
specific modeling environments quickly, and serves as a platform for such environments 
to run on.  

B. Related Work 
Traditional simulators such as [10][5][3] provide good performance, but are hard to 
retarget or modify. Simplescalar does provide significant capabilities for micro-
architectural design space exploration, but its low-level implementation makes it 
difficult to modify or extend. Our work is closest to that of Architecture Description 
Languages (ADL’s) such as [6][7][8]. These are specialized languages for describing 
the microprocessors and their micro-architectures. Among these, Sim-nml [6] is the 
most similar to our approach in that it takes a structural view to the specification of 
instruction sets, but it is text-based and less intuitive to learn and use than our language. 
Expression [8] is also a visual language, but it is primarily targeted at describing 
pipeline-based micro-architectures, something that we orthogonalize from the ISA. 
LISA[7] is the most well-known ADL, but it mixes the function and micro-architecture, 
making reuse difficult. 

C. Outline of Paper 
The paper is organized as follows: In Section II, we explain the syntax of the ISA_ML 
language by describing the individual elements of the language and the language rules. 
Section III illustrates the language semantics with a simple, but detailed example. 
Section IV presents the design of the interpreter. In Section V we present our results in 
describing large portions of the MIPS, ARM, and PowerPC ISA’s. Section VI wraps up 
the paper and includes a discussion of future work.  
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Figure 1: Class Diagram for ISA_ML 

II. LANGUAGE SYNTAX 
Figure 1 shows the class diagram of the ISA_ML paradigm. A legal ISA_ML model has 
one ISA_State and a single top level Instruction Group. The instruction set state, 
ISA_State is present on the lower right of the paradigm, and the group of instructions. 
InstructionGroup, is present on the left-hand side with instruction being in the left-
center area. 

A. Instruction Set State 
The ISA state elements are pictured in Figure 2. The memories are for instruction 
storage, data storage, and in addition, they can represent I/O devices mapped to 
particular memory addresses. Register files are for data and program counter storage.  

 

 
Figure 2: ISA State Element Icons 

 
Figure 3: Instruction Icons 

 
Both memory and register files are defined by: the number of bits used to address them, 
the size of words that they store and a unique suffix. The memory instance also can 
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allow offsets, and is given a base address. All legal models have at least one memory 
and at least one register file. There is exactly one PC_binding which represents the 
program counter and must point to a particular register in a register file. 

B. Instruction Groups and Instructions 
Exactly one top-level instruction group contains all of the definitions of instructions 
supported by the instruction set. In this version all instructions must be of the same bit-
width. Instructions and their operands1 are both derived from the Bitfield type. Bitfields 
have the following arguments: a non-negative integer BitLength, an encoding string 
called BitfieldEncoding, and a Boolean variable SingleEncoding that indicates if it has a 
single encoding or is all don’t cares.  
1) Instructions 
Instructions can be of three types, base instructions, actual instructions, and illegal 
instructions. Base instructions are used to define families of instructions. Actual 
instructions are those from the instruction set. Illegal instructions represent encodings 
that are prohibited in the instruction set. The Boolean variable ModifiesPC indicates if 
the instruction writes to the program counter in a non-standard way (e.g. a branch 
instruction). The string Operator indicates the instruction’s operator name. An 
instruction is a base instruction if the Boolean variable IsBaseInst is true. The Boolean 
IsIllegal indicates if the instruction is an illegal instruction. Only instances and subtypes 
of base instructions can be contained within other instructions. The different icons for 
the instruction, sub-type, and instance are shown in Figure 3. Actual instructions must 
be unique in their names and in their encodings that they present. The encodings are 
specified in two ways: directly at the top level, or via the operands that the instruction 
model contains.  

 
Figure 4: Base Operand Icons 

 
Figure 5: Anchor Icons 

2) Base Operands 
The types of bit-fields supported within instructions are RegReference, MemReference, 
ImmediateValue, ConstantValue, and other instructions. The first two are references 
respectively to a register file and a memory/io area. The references are to one or more 
operands and are read or write. Currently ISA_ML supports single-element references, 
and Boolean-list references that have one bit for each element in the referenced 
memory/register element. ImmediateValue’s are numbers specified directly in the 
bitfield and can be signed or unsigned.  ConstantValue is similar to ImmediateValue, 
but it cannot have don’t cares and is specified with an integer that is converted to the 
appropriate bit-field. Figure 4 shows the base operand icons. 

                                                        
1 Even though an instruction can be an operand of another instruction, we refer to operands as 

non-instruction operands. 

RegRef MemRef Immediate Constant 

InstBegin InstEnd InstAnchor 



 

3) Anchors 
Instructions can also contain anchors, which serve as marking points of particular bits in 
the instruction. InstBegin and InstEnd are anchors that represent the beginning and end 
bits of the instruction respectively. In addition, a general anchor, InstAnchor, can be 
used where the bit referenced is specified. Anchors appear as ports that can be 
connected to other instructions and operands. The anchor icons are shown in Figure 5.  
4) Connections 
Elements can be connected by ordering connections. A connection from one operand to 
another indicates that the first operands bits precede those of the second operand (which 
the arrow points to). Connections can also be connected to anchors and instructions. In 
this sub-section, we detail the semantics of all legal connections. A non-instruction 
object can have at most one incoming and one outgoing connection. In the case of an 
instruction with anchors, it can have more connections, as long as the instruction itself 
and the anchors each only having at most one incoming and outgoing connection. 
Below we list the semantics of the different types of ordering connections. 

• Operand-Operand Connections - the first bit of the destination operand will be 
the bit immediately after the last bit of the source operand. 

• Operand-Anchor Connections – Let b be the bit number of the anchor. A 
connection from the operand to the anchor specifies that the last operand bit is 
the (b-1)th bit. A connection from the anchor to the operand specifies that the 
first operand bit is the b th bit. 

• Instruction-Anchor and Operand Connections – A connection from an 
external operand to an anchor within an instruction behaves the same as an 
operand-anchor connection, but within an instruction. If there is a position 
conflicts between the low-level instruction and its container instruction, the 
container’s position takes precedence. 

• Instruction-Operand Collapsing Connections – We call a connection between 
an operand and an instruction a collapsing connection because the operand is 
“collapsed” into the instruction. If the connection is from the operand to the 
instruction, then the operand is inserted in the first unoccupied bits of the 
instruction. If the connection is from the instruction to the operand, then the 
operand is inserted backwards, where its last bit will occupy the last available bit 
in the instruction. 

C. Language Rules 
Below we list the language rules. We indicate when rules are statically checked by 
constraints, and all others are dynamically checked by running the interpreter. These 
language rules include: 

1. Fully deterministic ordering within an instruction.  
2. Each operand can have at most one incoming connection and one outgoing 

connection.  
3. All actual and illegal instructions must have the same bit-width 
4. The operands of an instruction must have unique names. (Solved by a constraint) 
5. The operands of an instruction must be consistent with the encoding of the 

instruction2 
6. Each instruction has a  unique name (Solved by a constraint) 
7. Each reference operand must be non-null (Solved by a constraint) 

                                                        
2 (i.e. their bit-field sizes must be less than or equal to the number of “don’t cares” (x’s) in the 

instruction’s bit field) 



 

8. Only instances and subtypes of base instructions are allowed in other 
instructions 

III. SIMPLE EXAMPLE 
Figure 6 shows a summary of the encodings of all of the instructions in this example. 
ArithmeticBase is a base-instruction that forms the basis for the Addition, Subtraction, 
and Multiply-Accumulate (MAC) instructions. In this example, all of the instructions are 
32-bit long, with 4-bit register references, and bit 31 is the first bit in every instruction3.  

 

 

 31..30 29...26 25..22 21..18 17..14 13..10 9..8 7..4 3..0 
Base 11 xxxx RM RN xxxx xxxx xx xxxx RD 
Add 11 0111 RM RN xxxx xxxx xx conf RD 
Sub. 11 0001 RM RN xxxx xxxx 00 conf RD 
MAC 11 0011 RM RN RMAC xxxx xx xxxx RD 

Figure 6: Instruction Encoding Summary 
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Figure 7: Base Arithmetic Instruction 

A. Base Arithmetic Instruction 
Figure 7 shows the base instruction that the other instructions are built from. Its 
encoding is specified as two “1”’s and then 30 “x”’s. It has InstBegin, InstEnd anchors 
and two custom anchors RegBase and ConfigBase that are set at bits 25 and 3 
respectively. RD is a write operand, and RM and RN are read operands. 

B. Actual Instructions 

ConfigBeginConstants
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Figure 8: Add Instruction 
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Figure 9: Multiply Accumulate Instruction 

 
Figure 8 shows the definition of the Add Instruction4. It has the 4-bit immediate 
BeginConstants with the value of “0111”, which is connected directly to the RegBase 
port (bits 29-26). Then there is the 4-bit ImmediateValue Config that is has an ordering 
connection from the instruction to it. This backwards collapsing connection means that 
                                                        

3 You can also specify in the top-level model that 0 is the first bit. 
4 The subtract instruction has a similar form, and so it is omitted. 



 

the operand occupies the last 4 unspecified bits of the base instruction (i.e. bits 7-4). 
Figure 9 contains the multiply accumulate instruction. It has two chained operands that 
are connected to ArithmeticBase. This means that they will fill in the un-filled bits 
starting from the beginning of the instruction. This puts BeginConstants at bits 29-26 
and RMAC in bits 17-14.  

IV. INTERPRETER 
The end goal of the interpreter for this project is to create a disassembler/decoder in 
C++ files that can decode an instruction stream. The interpreter was developed in Visual 
C++ beginning with the files generated by the GME BON (Builder Object Network) 
Extender, and utilizes the visitor design pattern for traversing the model. The interpreter 
first assembles the instruction set and checks that the language rules are followed. After 
this, it does a consistency check on the instruction encodings. Then it creates a header 
file to support the decoding of the instructions. Finally, C++ files for disassembling and 
interpreting a trace of instructions are generated. 

A. Instruction Set Assembly 
Once the design in ISA_ML passes all constraints the interpreter is run to check other 
language rules, and then assemble the instruction set. First, the instruction-set state is 
visited and the register files, memory, and program counter are all verified. After this, 
the instructions are visited. First, the instructions are split up into lists of actual, illegal, 
and base instructions. Then, the base instructions are assembled and verified. After this, 
the actual and illegal instructions are assembled and verified. Each assembled 
instruction takes the form of a bit-field and a list of operands, where each operand is a 
bit-field and has a position.  

B. Consistency Check 
The next step is to check the consistency of the encoding of instructions. Each 
instruction’s bit-field (in terms of 0’s, 1’s and x’s) comes from the top-level encoding 
and the operands in the instruction. To check consistency, all of the actual instructions 
are logically compared to ensure that their bit-field sets are disjoint. The complexity of 
this check is O(B*I^2) where B is the number of bits per instruction and I is the number 
of actual instructions present. 

C. Header File Generation 
After the consistency check the interpreter creates the data structures to hold the 
different instruction types and their respective operands, as well as mask and signature 
constants for recognizing the particular instructions.  It creates data structures for both 
big-endian and little-endian hosts.  

We follow the style of the disassembler included with the SWARM [5] emulator for 
the ARM7 processor because of its regularity, clarity and efficiency. The data structure 
has fields of particular bit widths that correspond to the operands. Data for constants 
and unspecified portions is replaced with dummy-bit fields. After these are constructed, 
bit-field mask and signature constants are created to distinguish one instruction type 
from another. For masks: zeroes and ones in the bit field are mapped to ones in the 
mask, and don’t-cares are mapped to zeroes in the mask. For the signature: zeroes and 
don’t-cares are mapped to zeroes, and ones are mapped to ones. Upon execution, the 
instruction word is logically AND-ed with the instruction mask, and is of the given type 



 

if the result matches the signature. Figure 10 shows the data structure, mask, and 
signature generated for the MAC instruction. Additionally, a union containing all of the 
instruction structures, and a dummy structure that represents the un-decoded instruction 
word is generated. Figure 11 shows the union for the example ISA. 

 
//bitfield=110011xxxxxxxxxxxxxxxxxxxxxxxxxx 
typedef struct _MAC_struct { 
             unsigned dummy0 : 2; 
             unsigned BeginConstants : 4; // Pos:29 
             unsigned Rm : 4; // Pos:25 
             unsigned Rn : 4; // Pos:21 
             unsigned Rmac : 4; // Pos:17 
             unsigned dummy1 : 10; 
             unsigned Rd : 4; // Pos:3 
} MAC_struct; 
#define MAC_MASK 0xfc000000 
#define MAC_SIG     0xcc000000  

Figure 10: MAC Structure, Mask, and Signature 
 

 

// the union of ALL of the  
// instruction field structures 
typedef union _insts { 
             unknowni_struct unknown_inst; 
             MAC_struct MAC_inst; 
             SUB_struct SUB_inst; 
             ADD_struct ADD_inst; 
} insts; 

Figure 11: Union for Decoding Instructions 
 

D. Disassembler and Trace Interfacer Generation 
The disassembler prints out all of the operand values for a matched instruction. The 
trace interfacer is more complicated because it interprets specific operand data. The 
parsed instructions are turned into trace entries that contain: the instruction type, the 
read operands, and the write operands of the given instruction. This trace takes the form 
of a class that can be used to quickly retarget trace-driven micro-architectural models to 
a new instruction set. 

V. RESULTS 
To demonstrate the power of our language and tool, we implemented subsets of the 
MIPS, ARM and PowerPC 32-bit RISC instruction sets.  Figure 12 summarizes our 
results. Because of varying infrastructure overhead, the time for setting up and 
comparing results with a reference simulator is not included. All runs of the interpreter 
took a negligible amount of time, so we do not include them. 

The MIPS subset was checked with small instruction traces from the SPIM emulator 
[3]. For the PowerPC ISA we implemented an integer subset without any system calls, 
or exotic memory instructions. The results were then compared against the Microlib 



 

PowerPC ISS [12]. The ARM ISA implementation was verified against SWARM’s 
disassembler. Because of the ARM ISA’s compact and logical instruction grouping, we 
were able to implement an abstracted subset of the major instructions5. In addition, the 
model specifies the illegal instructions in the instruction set that overlap the actual 
instructions.  

 
 MIPS Integer 

Subset 
PowerPC Integer 
Subset 

ARM 
(approx.) 

Base Instructions 11 11 6 
Actual Instructions 55 91 26 
Illegal Instructions 0 0 5 
Hours to Enter 
(appox.) 

8 6 6 

Header File (# lines) 1370 2424 1026 
Figure 12: Results Summary 

 
Creation of the models was greatly aided by constraint checking and by dynamic 
checking in the decoder-generator software. Many errors such as overlapping 
encodings, duplicate instruction types, and incorrectly sized bit fields were detected 
automatically by the language and the interpreter. Furthermore, we ended up 
extensively pasting subtypes and instances along with parameterization to replicate 
similarly structured instructions rapidly. We found that using collapse instructions and 
external connections to instruction anchors to be much slower than pasting and 
parameterization. 

VI. FINAL WORDS 
With ISA_ML we demonstrated the power of applying domain-specific modeling to the 
domain of instruction set modeling. By applying meta-modeling we were able to 
construct a flexible, powerful, extendable and intuitive visual language that is inherently 
re-targetable. To accompany this language, we constructed an interpreter that checks 
language rules and then generates C++ code for a disassembler and for a trace-interface 
for interacting with micro-architectural models. 

A. Future Work 
Much work remains to be done with both the language and the interpreter. To fully 
capture complicated instruction sets the language should be extended to allow implicit 
operands and operands that relate to both memory and registers. We will modify our 
interpreter code to allow for arbitrarily large instruction sizes (currently only 
instructions 32-bits or larger are supported). Another interesting direction would be to 
allow the chaining of multiple instructions within a single instruction to support VLIW-
style instruction sets. While this language does allow rapid description of instruction 
sets, there still is too much redundant information and the interface could be made more 
intuitive. The interpreter still is not general enough, and the generated code can be 
further optimized. Other potential directions include: creating interpreters to export 

                                                        
5  These instructions include: multiplies, non-multiply data-path instructions, the branch 

instruction, coprocessor instructions, load instructions, and store instructions, and the software 
interrupt instruction. 



 

models to architectural and hardware description languages, supporting variable length 
instructions, and extending the language to support execution semantics.  
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