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Abstract— We detail the syntax and semantics of ISA_ML,su& modeling language

for describing Instruction Set Achitectures of rojmrocessors, and an accompanying
tool that takes a description in the language arkeiates decoders from it in the form
of a disassembler and a micro-architectural tratafacer. The language and tool were
built using the Generic Modeling Environment (GMEpd leverage the concepts of
meta-modeling to increase productivity and to ptevextensive error checking to the
modeler. Using this tool, we were able to consteuntodel of significant subsets of the
MIPS, ARM, and PowerPC instruction sets each iro8ré or less. This language can
be retargeted for other purposes, such as gengatitthesizable instruction decoders

Index Terms— Computer Architecture, Design Automation, Visuahnguages,
Microprocessors

|. INTRODUCTION

Software is a growing concern in embedded systessgyd because of the flexibility
that software implementations of complex functiofifer and because of the stringent
constraints placed on timing, memory occupation guality that they must satisfy. To
verify software intensive designs, it is importémtaccurately model the execution time
of the processor(s) in the system. A microprocessomsists of the Instruction Set
Architecture (ISA) used to program it, and the uhdleg microarchitectural
implementation of the ISA. For a given ISA (e.g. MRMIPS, x86) there are typically
a wide variety of microarchitectural implementagonwith varying degrees of
performance (e.g. latency, clock speed, power,)af@@signers must either obtain an
accurate model from the processor vendor, or aetisthe model themselves. A less
desirable alternative is using a functional Indinrc Set Simulator (ISS), which only
provides feedback on the number of instructionsebtel, but execution time can only
be inferred in an approximate way. In either cassjgn space exploration at the micro-
architectural level is difficult.

We have developed a methodology and micro-architaktmodels [11] that
interface with functional models to allow for exption within the Metropolis system-
level design framework [4] using formal models afmputation to simplify the
modeling process. Still, targeting a different instion set requires several steps. First,
the ISS must be modified to output the trace ofrirttions that it executes. Next, a
decoder must be built in order to translate tractsobjects that the micro-architectural
model can use. Finally, the micro-architectural elod configured to represent the
chosen processor.

Our work helps automate the second step of thisgeo©by generating the decoding
code from a representation described in the visumngluage ISA_ML (An ISA Modeling
Language). This is the most difficult part of thaterfacing process because each
instruction type must be interfaced to the micrch@ectural model, and it is often hard



to reuse code from the ISS to do this. ISA_ML waveadoped in the GME meta-
modeling framework [1]. ISA_ML is a domain specifitodeling language for rapidly
constructing descriptions of the encodings of lngtion Set Architectures (ISA’s) in an
intuitive manner consistent with how such ISA’s aspically specified in their
manuals. To accompany the language, we developmal that synthesizes disassembly
code and a trace-interface for our micro-architedtimodels. Furthermore, the tool
provides extensive static and dynamic error checfon models.

A. Meta-modeling and Model Integrated Computing

Meta-modeling is a term that implies modeling dtigher level of abstraction, but its
precise meaning depends on the context in whith used. In Metropolis, the meta-
model is based on a precise and flexible sematitatscan be used to model a wide
variety of models of computation. The type of metadeling that this paper refers to is
a tool for building domain specific modeling enviroents.

The tool adopted here is GME (the Generic Modelmyironment)[1]. It uses the
formalisms of UML (the unified modeling language)daOCL (the Object Constraint
Language) to construct domain specific modelingiremments [9]. GME follows the
Model-Integrated Computing [2] paradigm that allothe user to construct domain
specific modeling environments quickly, and sermgs platform for such environments
to run on.

B. Related Work

Traditional simulators such as [10][5][3] provideagl performance, but are hard to
retarget or modify. Simplescalar does provide $icgmt capabilities for micro-
architectural design space exploration, but its-level implementation makes it
difficult to modify or extend. Our work is closet that of Architecture Description
Languages (ADL’s) such as [6][7][8]. These are &exed languages for describing
the microprocessors and their micro-architectufgrong these, Sim-nml [6] is the
most similar to our approach in that it takes aicttrral view to the specification of
instruction sets, but it is text-based and lesstine to learn and use than our language.
Expression [8] is also a visual language, but itpignarily targeted at describing
pipeline-based micro-architectures, something that orthogonalize from the ISA.
LISA[7] is the most well-known ADL, but it mixesehfunction and micro-architecture,
making reuse difficult.

C. Outline of Paper

The paper is organized as follows: In Section &, explain the syntax of the ISA_ML
language by describing the individual elementsheflanguage and the language rules.
Section Il illustrates the language semantics watlsimple, but detailed example.
Section IV presents the design of the interpréte6ection V we present our results in
describing large portions of the MIPS, ARM, and RoRC ISA’s. Section VI wraps up
the paper and includes a discussion of future work.
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Figure 1: Class Diagram for ISA ML

I1. LANGUAGE SYNTAX

Figure 1 shows the class diagram of the ISA_ML gigra. A legal ISA_ML model has
one ISA_State and a single top level Instructiooupr The instruction set state,
ISA_Statds present on the lower right of the paradigm, #regroup of instructions.
InstructionGroup is present on the left-hand side with instructiming in the left-

center area.

A. Instruction Set State

The ISA state elements are pictured in Figure 2 Wemories are for instruction
storage, data storage, and in addition, they cgmesent I/O devices mapped to
particular memory addresses. Register files arddta and program counter storage.
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Figure 2: ISA State Element Icons
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Figure 3: Instruction Icons

Both memory and register files are defined by:rthenber of bits used to address them,
the size of words that they store and a uniquexsufihe memory instance also can




allow offsets, and is given a base address. Alllegodels have at least one memory
and at least one register file. There is exactlg B& bindingwhich represents the
program counter and must point to a particularstegiin a register file.

B. Instruction Groups and Instructions

Exactly one top-level instruction group containk dl the definitions of instructions
supported by the instruction set. In this versibrinatructions must be of the same bit-
width. Instructions and their operandse both derived from tHgitfield type. Bitfields
have the following arguments: a non-negative inteégglength an encoding string
calledBitfieldEncoding and a Boolean variab&ingleEncodinghat indicates if it has a
single encoding or is all don't cares.

1) Instructions

Instructions can be of three types, base instrusti@ctual instructions, and illegal
instructions. Base instructions are used to defemailies of instructions. Actual
instructions are those from the instruction séeghl instructions represent encodings
that are prohibited in the instruction set. The IBao variableModifiesPCindicates if
the instruction writes to the program counter iman-standard way (e.g. a branch
instruction). The stringOperator indicates the instruction’s operator name. An
instruction is a base instruction if the Booleaniatale IsBaselnsis true. The Boolean
Islllegal indicates if the instruction is an illegal instioea. Only instances and subtypes
of base instructions can be contained within othstructions. The different icons for
the instruction, sub-type, and instance are showhigure 3. Actual instructions must
be unique in their names and in their encodings ttey present. The encodings are
specified in two ways: directly at the top level,wia the operands that the instruction
model contains.
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Figure 4: Base Operand Icons
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Figure 5: Anchor Icons

2) Base Operands

The types of bit-fields supported within instrucigoareRegReferenceMemReferenge
ImmediateValuge ConstantValueand other instructions. The first two are refersnce
respectively to a register file and a memory/icaarehe references are to one or more
operands and are read or write. Currently ISA_Mppguts single-element references,
and Boolean-list references that have one bit facheelement in the referenced
memory/register elemenitmmediateValus are numbers specified directly in the
bitfield and can be signed or unsigne@onstantValuds similar to ImmediateValue,
but it cannot havelon’t caresand is specified with an integer that is conveittedhe
appropriate bit-field. Figure 4 shows the base apeicons.

! Even though an instruction can be an operand athen instruction, we refer to operands as
non-instruction operands.



3) Anchors

Instructions can also contain anchors, which sasvmarking points of particular bits in
the instructionlnstBeginand InstEndare anchors that represent the beginning and end
bits of the instruction respectively. In additian,general anchoinstAnchor can be
used where the bit referenced is specified. Anchappear as ports that can be
connected to other instructions and operands anchor icons are shown in Figure 5.

4) Connections

Elements can be connecteddrgering connectionsA connection from one operand to
another indicates that the first operands bitsgmec¢hose of the second operand (which
the arrow points to). Connections can also be atedeto anchors and instructions. In
this sub-section, we detail the semantics of ajaleconnections. A non-instruction
object can have at most one incoming and one auggoennection. In the case of an
instruction with anchors, it can have more conumasj as long as the instruction itself
and the anchors each only having at most one imoprand outgoing connection.
Below we list the semantics of the different typé®rdering connections.

* Operand-Operand Connections - the first bit of the destination operand will be
the bit immediately after the last bit of the saioperand.

» Operand-Anchor Connections— Letb be the bit number of the anchor. A
connection from the operand to the anchor spedifigisthe last operand bit is
the (b-1Y" bit. A connection from the anchor to the opergmecifies that the
first operand bit is the B bit.

* Instruction-Anchor and Operand Connections— A connection from an
external operand to an anchor within an instrudiiehaves the same as an
operand-anchor connection, but within an instructlbthere is a position
conflicts between the low-level instruction anddtstainer instruction, the
container’s position takes precedence.

* Instruction-Operand Collapsing Connections— We call a connection between
an operand and an instruction a collapsing conmettecause the operand is
“collapsed” into the instruction. If the connectisnfrom the operand to the
instruction, then the operand is inserted in the finoccupied bits of the
instruction. If the connection is from the instioatto the operand, then the
operand is inserted backwards, where its last Hlibacupy the last available bit
in the instruction.

C. Language Rules

Below we list the language rules. We indicate wheles are statically checked by
constraints, and all others are dynamically chedkgdunning the interpreter. These
language rules include:
1. Fully deterministic ordering within an instruction.
2. Each operand can have at most one incoming cooneatid one outgoing
connection.
3. All actual and illegal instructions must have taeng bit-width
4. The operands of an instruction must have uniquessafsolved by a constraint)
5. The operands of an instruction must be consistéhttive encoding of the
instructiorf
6. Each instruction has a unique name (Solved bynatcaint)
7. Each reference operand must be non-null (Solvea dpnstraint)

2 (i.e. their bit-field sizes must be less thangua to the number of “don’t cares” (x’s) in the
instruction’s bit field)



8. Only instances and subtypes of base instructiamaléowed in other
instructions

[1l. SIMPLE EXAMPLE

Figure 6 shows a summary of the encodings of athefinstructions in this example
ArithmeticBases a base-instruction that forms the basis forAbdition, Subtraction
andMultiply-AccumulatgMAC) instructions. In this example, all of thestructions are
32-bit long, with 4-bit register references, and3i is the first bit in every instructién

31..30 | 29...26 | 25.22 | 21..18 | 17..14 | 13..10 | 9.8 | 7.4 | 3..0
Base 11 XXXX Rwm Rn XXXX XXXX XX | XXxX | Rp
Add 11 0111 Rwm Rn XXXX XXXX xx | conf | Rp
Sub. 11 0001 R Rn XXXX XXXX 00 | conf | Rp
MAC 11 0011 Rwm Rn Rwmac XXXX XX | XXxXX | Rp

Figure 6: Instruction Encoding Summary
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Figure 7: Base Arithmetic Instruction

A. Base Arithmetic Instruction

Figure 7 shows the base instruction that the othstructions are built from. Its
encoding is specified as two “1”s and then 30 &It hasinstBegin InstEndanchors
and two custom anchorRegBaseand ConfigBasethat are set at bits 25 and 3
respectivelyRp is a write operand, ari®y, andRy are read operands.

B. Actual Instructions
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Figure 8: Add Instruction
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Figure 9: Multiply Accumulate Instruction

Figure 8 shows the definition of the Add Instrunfio It has the 4-bit immediate
BeginConstantsvith the value of “0111”, which is connected dilgdo the RegBase
port (bits 29-26). Then there is the 4-bit ImmeeN&tlueConfig that is has an ordering
connection from the instruction to it. This backdsuicollapsing connection means that

% You can also specify in the top-level model thé the first bit.
* The subtract instruction has a similar form, aodt $s omitted.



the operand occupies the last 4 unspecified bith@fbase instruction (i.e. bits 7-4).
Figure 9 contains the multiply accumulate instructilt has two chained operands that
are connected td\rithmeticBase This means that they will fill in the un-filleditb
starting from the beginning of the instruction. §iputsBeginConstantst bits 29-26
andRMAc in bits 17-14.

V. INTERPRETER

The end goal of the interpreter for this projectdscreate a disassembler/decoder in
C++ files that can decode an instruction streane. ifterpreter was developed in Visual
C++ beginning with the files generated by the GM&NB (Builder Object Network)
Extender, and utilizes the visitor design pattemtfaversing the model. The interpreter
first assembles the instruction set and checksthiealanguage rules are followed. After
this, it does a consistency check on the instronatiocodings. Then it creates a header
file to support the decoding of the instructionsafly, C++ files for disassembling and
interpreting a trace of instructions are generated.

A. Instruction Set Assembly

Once the design in ISA_ML passes all constraingsiiterpreter is run to check other
language rules, and then assemble the instrucéibrFgst, the instruction-set state is
visited and the register files, memory, and progmmnter are all verified. After this,
the instructions are visited. First, the instruetiare split up into lists of actual, illegal,
and base instructions. Then, the base instructomsissembled and verified. After this,
the actual and illegal instructions are assembled &erified. Each assembled
instruction takes the form of a bit-field and a ki operands, where each operand is a
bit-field and has a position.

B. Consistency Check

The next step is to check the consistency of theoding of instructions. Each
instruction’s bit-field (in terms of 0’s, 1's andsx comes from the top-level encoding
and the operands in the instruction. To check stesty, all of the actual instructions
are logically compared to ensure that their bidfisets are disjoint. The complexity of
this check iO(B*I1"2) whereB is the number of bits per instruction ani$ the number
of actual instructions present.

C. Header File Generation

After the consistency check the interpreter credbes data structures to hold the
different instruction types and their respectiver@nds, as well as mask and signature
constants for recognizing the particular instrutsio It creates data structures for both
big-endian and little-endian hosts.

We follow the style of the disassembler includethwhe SWARM [5] emulator for
the ARM7 processor because of its regularity, tfaand efficiency. The data structure
has fields of particular bit widths that correspdndthe operands. Data for constants
and unspecified portions is replaced with dummyfibits. After these are constructed,
bit-field mask and signature constants are cre#dedistinguish one instruction type
from another. For masks: zeroes and ones in théeldt are mapped to ones in the
mask, and don’'t-cares are mapped to zeroes in #sk.nfror the signature: zeroes and
don’t-cares are mapped to zeroes, and ones areeshdappones. Upon execution, the
instruction word is logically AND-ed with the insittion mask, and is of the given type



if the result matches the signature. Figure 10 shtive data structure, mask, and
signature generated for the MAC instruction. Aduahally, a union containing all of the
instruction structures, and a dummy structure tiyatesents the un-decoded instruction
word is generated. Figure 11 shows the union ferettample ISA.

/bitfield=11001 LXXXXXXXXXXXXXXXXXXXXXXXXXX

typedef struct _MAC_struct {
unsigned dummyo : 2;
unsigned BeginConstants : 4; // Pos:29
unsigned Rm : 4; // Pos:25
unsigned Rn : 4; // Pos:21
unsigned Rmac : 4; // Pos:17
unsigned dummyl : 10;
unsigned Rd : 4; // Pos:3

} MAC_struct;

#define MAC_MASK 0xfc000000

#define MAC_SIG  0xcc000000
Figure 10: MAC Structure, Mask, and Signature

// the union of ALL of the

/I instruction field structures

typedef union _insts {
unknowni_struct unknown_inst;
MAC_struct MAC_inst;
SUB_struct SUB_inst;
ADD_struct ADD _inst;

} insts;
Figure 11: Union for Decoding Instructions

D. Disassembler and Trace Interfacer Generation

The disassembler prints out all of the operand eslior a matched instruction. The
trace interfacer is more complicated because @rpmets specific operand data. The
parsed instructions are turned into trace entti@s tontain: the instruction type, the
read operands, and the write operands of the gnstruction. This trace takes the form
of a class that can be used to quickly retargeetdriven micro-architectural models to
a new instruction set.

V. RESULTS

To demonstrate the power of our language and teeljmplemented subsets of the
MIPS, ARM and PowerPC 32-bit RISC instruction setsigure 12 summarizes our
results. Because of varying infrastructure overhetlg time for setting up and
comparing results with a reference simulator isinoluded. All runs of the interpreter
took a negligible amount of time, so we do notune them.

The MIPS subset was checked with small instrudtiaoes from the SPIM emulator
[3]. For the PowerPC ISA we implemented an integdrset without any system calls,
or exotic memory instructions. The results werentbempared against the Microlib



PowerPC ISS [12]. The ARM ISA implementation wasified against SWARM’s
disassembler. Because of the ARM ISA’s compactlagidal instruction grouping, we
were able to implement an abstracted subset oféijer instructiony In addition, the
model specifies the illegal instructions in thetinstion set that overlap the actual
instructions.

MIPS Integer Power PC | nteger ARM

Subset Subset (approx.)
Base Instructions 11 11 6
Actual Instructions 55 91 26
[llegal Instructions 0 0 5
Hoursto Enter 8 6 6
(appox.)
Header File (# lines) 1370 2424 1026

Figure 12: Results Summary

Creation of the models was greatly aided by comgtrehecking and by dynamic
checking in the decoder-generator software. Mangorer such as overlapping
encodings, duplicate instruction types, and inatlyesized bit fields were detected
automatically by the language and the interpretenrthermore, we ended up
extensively pasting subtypes and instances alort parameterization to replicate
similarly structured instructions rapidly. We foutitht using collapse instructions and
external connections to instruction anchors to bechmslower than pasting and
parameterization.

V1. FINAL WORDS

With ISA_ML we demonstrated the power of applyingrhin-specific modeling to the
domain of instruction set modeling. By applying aetodeling we were able to
construct a flexible, powerful, extendable andiinta visual language that is inherently
re-targetable. To accompany this language, we amistd an interpreter that checks
language rules and then generates C++ code faagstimbler and for a trace-interface
for interacting with micro-architectural models.

A. Future Work

Much work remains to be done with both the languagé the interpreter. To fully
capture complicated instruction sets the languagelld be extended to allow implicit
operands and operands that relate to both mematyreisters. We will modify our
interpreter code to allow for arbitrarily large tingtion sizes (currently only
instructions 32-bits or larger are supported). Apotinteresting direction would be to
allow the chaining of multiple instructions withansingle instruction to support VLIW-
style instruction sets. While this language dodéswakrapid description of instruction
sets, there still is too much redundant informatod the interface could be made more
intuitive. The interpreter still is not general egh, and the generated code can be
further optimized. Other potential directions irsu creating interpreters to export

® These instructions include: multiplies, non-mutipdata-path instructions, the branch
instruction, coprocessor instructions, load indtouts, and store instructions, and the software
interrupt instruction.



models to architectural and hardware descriptioguages, supporting variable length
instructions, and extending the language to supp@tution semantics.
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